若向量组的秩为r,则其中任意r 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/06 00:23:25
设向量组α1,α2,…,αr线性相关,而其中任意r-1个向量都线性无关,证明:要使k1α1+k2α2+…+krαr=0成

(1)k1a1+k2a2+...+krar=0任意一项移到方程右边k1a1+krar=kiai若ki=0因为其余r-1个线性无关所以其余系数都为0即全为0(2)任意r-1个向量都线性无关,则任意s(s

线性代数已知列向量组的秩为r,请问如何证明:列向量组中的任意r个线性无关的向量均构成它的一个极大线性无关组?(好像是用极

因为秩为r,再加一个向量a就线性相关(r+1个向量)了,用定义写出r+1向量的线性组合为0,当a的系数为0,与线性无关矛盾.当a的系数不为0.ka移等号另一边,k除过去即线性表出.

线性代数问题已知列向量组的秩为r,请问如何证明:列向量组中的任意r个线性无关的向量均构成它的一个极大线性无关组?(好像是

所谓极大无关组,说的专业一点就是“空间的基”.举个例子,三维空间的一组基是:(1,0,0)(0,1,0)(0,0,1).那么三维空间的任何一个向量都能由这组基来表示.比如有个向量(a,b,c),他用基

证明:秩为r的向量组中任意r个线性无关的向量都构成它的一个极大线性无关组.

证:设a1,a2,...,ar是向量组中r个线性无关的向量则对原向量组中任一向量b,b必能由a1,a2,...,ar线性表示.否则a1,a2,...,ar,b线性无关,与原向量组秩为r矛盾所以根据极大

证明秩为r的向量组中任意r个线性无关的向量都构成它的一个极大线性无关组.

证明:设a1,a2,.,ar为a1,a2,.,as中任意一个线性无关的向量组,aj(j=1,2,.,s)为向量组中的任意一个向量,则a1,a2,.,ar,aj线性相关.否则与向量组的秩为r矛盾.所以a

我知道“秩为r的向量组中任意r个线性无关的向量都构成它的一个极大线性无关组.”那要是没有“线性无关”的这个条件,命题是不

秩为r的向量组中任意r向量当然不一定是极大无关组因为极大无关组首先要满足线性无关线性相关的部分组一定不是极大无关组再问:那由同一个极大线性无关组线性表示的两个向量可能线性无关吗?再答:可能呀再问:β1

设A是sxn矩阵,B是由A的前m行构成的mxn矩阵,证明:若A的行向量组的秩为r,则r(B)>=r+m-s.

证明:设A的行向量组为a1,a2,...,am,...,as.则B的行向量组为a1,a2,...,am.A的行向量组的秩为r,即r(A)=r.即要证r(B)>=r(A)+m-s.设ai1,ai2,..

证明:r维向量组的每个向量添上n-r个分量,成为n维向量组,若r维向量组线性无关,则n维向量组也线性

知识点:向量组a1,...,as线性无关的充要条件是齐次线性方程组(a1,...,as)x=0只有零解.设r维向量组a1,...,as线性无关则齐次线性方程组(a1,...,as)x=0只有零解设a1

怎么证明,在一个秩为r的向量组中,任意r个线性 无关的向量可构成一个...

这个是定义啊.秩就是极大线性无关组包含的向量的个数.

已知向量组a1,a2,...,as的秩为r.证明:a1,a2,...as中任意r个线性无关的向量都构成它的一个极大线性无

向量组a1,a2,...,as的秩为r.,则向量组中任意r+1个向量都是线性相关的,由极大线性无关组的定义即得a1,a2,...as中任意r个线性无关的向量都构成它的一个极大线性无关组.

已知α1,α2,…αs的秩为r,证明:α1,α2,…αs中任意r个线性无关的向量都构成它的一极大线性无关组

极大线性无关组的定义:如果存在r个向量线性无关.任意的r+1个向量(若存在)线性相关.那么这r个向量是向量组的一个极大无关组.同时,称极大无关组中向量的个数(即r)为向量组的秩.根据定义,这句话显然.

设向量组a1,a2.am的秩为r,则a1,a2,.am中任意r个线性无关的向量都构成它的极大线性无关组

反证:若a1,a2,.am中任意r个线性无关的向量构成的不是它的极大线性无关组不妨记b1,b2,...br是取出的r个线性无关的向量由于它不是原向量组的极大线性无关组那么可以在剩下的向量中取至少1个(

线代的一道证明题证明:r维向量组的每个向量添上n-r个分量,成分n维向量组,若r维向量组线性无关,则n维向量组也线性无关

当n=r的时候显然成立当n>r的时候设原r维向量组系数矩阵为M设n维系数向量组系数矩阵为N显然MN具有相同的列数不同的行数有题目知r维向量组线性无关则M的秩r(M)=r也就是说M是列满秩矩阵又因为r=

设向量组a1,a2,……as的序为r,则向量组中任意r+1个向量比为线性相关?为什么

你说的是秩吧?因为向量组的秩是r的话,则说明这个向量组中的任意一个向量都可以被r个无关向量所表示而其中任意的r+1个向量中,必然有一个极大无关组中含至少r个向量,所以第r个向量就必然是可以被这些向量线

线性代数问题证明向量组a1,a2.as的任意r个线性无关的向量都是该向量组的一个极大无关组,其中r为该向量组的秩

根据定义和给定的条件,这是很显见呀.首先,这r个线性无关的向量,若再添加任何一个向量,必为线性相关,否则与后一条件“r为该向量组的秩”相矛盾,因此该r个线性无关的向量必为该向量组的一个极大无关组.

判断题:若矩阵A的秩为r,则A中任意r+1阶子式都为0.

这是对的知识点:1.若A中有非零的r阶子式,则r(A)>=r2.若A的所有r+1阶子式都为0,则r(A)

在三角形ABC中国,若对任意γ属于R,都有|AB向量+γAC向量|≥|BC向量|.则三角形ABC一定为直角三角形.为什么

法一:用几何意义做.|向量AB+γ*向量AC|=|向量BA+(-γ)*向量AC|=|由B指向线AC上一点的向量|,其最小值为B到AC的距离.再结合题设知B到AC距离≥|向量BC|,因而B到AC距离=|

设向量组α1,α2,…αs的秩为r,且其中每个向量都可经α1,α2,…αr线性表出,证明α1,α2,…αr为α1,α2,

α1,α2,…αs的秩为rthenαr+1=(β1,r+1)α1+(β2,r+1))α2+...+...+(βr,r+1)αrαr+2=(β1,r+2)α1+(β2,r+2))α2+...+...+(

判断题:若矩阵A的秩为r,矩阵A中任意r阶子式不等于0

错误.如:123401340000秩为2.但2阶子式3434等于0.满意请采纳^_^.

设向量组a1,a2,.as的秩为r(r

结论是错的,反例:α1=(1.0),α2=(0,1),α3=(2,0)s=3,r=2.{α1,α3}就不是该向量组的极大无关组.