若lim n-无穷 Un=a,证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/08 05:11:10
设数列Xn有界,limYn=o ,limn趋向于正无穷.证明limXn.Yn=0

{Xn}有界,说明存在N,使得│Xn│≤NlimXn×Yn≤lim(N×Yn)=N*limYn因为limYn=0所以N*limYn=0,即limXn×Yn=0

若当n趋向于无穷时,limun=a,证明:当n趋向于无穷时lim|un|=|a|

由limun=a,知对于任意的e>0,存在自然数k0,使得n>k0时,有|un-a|k0时,||un|-|a||小于等于|un-a|

高数 极限证明limn-无穷大an=a,证明limn-无穷大|an|=|a|.

根据极限的定义证明limn-无穷大an=a,即存在N,当n>N时,对任意的正数e都有,|an-a|

设limUn=a,若a不为零,试用定义证明:limUn+1/Un=1

limUn=a由定义,得到:任意ε>0,存在N,当n>N,有|Un-a|

用夹逼定理证明limn!/2^n=0

很明显,他的极限不是零啊,是不是lim2^n/n!=0啊?证明:2^n/n!>0/n!=0;2^n/n!=2*2*2*……2/n!

求证明limn趋向无穷n!的平方分之n的平方等于零?

很简单,N!分之一是更高阶的无穷小

若 limUn=a,证明 lim|Un|=|a|,并举例说明反过来未必成立.

∵limUn=a∴根据极限定义知,对任意ε>0,存在N>0,当n>N时,有│Un-a│

若lim(n的平方×Un)存在,且n趋近于无穷,证明级数sei'ge'maUn收敛

因为limn^2*un存在,于是n^2*un有界,即存在M>0,使得|n^2*un|

用极限定义证明:limn→正无穷(根号下n+1-根号下n)=0

对任给的ε>0(ε1/(2ε)^2,于是,取N=[1/(2ε)^2]+1,则当n>N时,有    |√(n+1)-√n|根据极限的定义,成立    lim(n→inf.)[√(n+1)-√n]=0.

高等数学极限证明lim(n趋于无穷)Un=a, 证明lim(n趋于无穷)|Un|=|a|

∵lim(n趋于无穷)Un=a即对于任意e>0,存在N,当n>N时,有|Un-a|

lim(lnUn/lnn)=P lim下面有个N→无穷 证明 1、P>1时,级数∑Un 收敛 2、p

证明的思路很明显与比较法是一样的,但题目有错误啊.级数收敛时,Un的极限是0,lnUn/lnn的极限存在的话,应该是一个负数啊再问:不好意思哦.把InUn/Inn改成ln(1/Un)/lnn再答:1、

若lim Un=A>0,用数列定义证明lim Un+1 / Un =1

∵limUn=A>0∴存在常数A,对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式|Un-A|<ε都成立,|U(n+1)-A|2,取ε<A-2,当n>N时,不等式|[U(n

设Un>=0,且{NUn}有界,证明:级数∑Un^2收敛(n从1到无穷)

设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊

高数证明题证明:若级数∑un条件收敛,对任意a∈R(包括a=±∞),则适当交换级数∑un的项,可使交换后的新级数收敛于a

在证明这个命题之前,我们先介绍一个关于正项级数的性质:若发散的正项级数∑Qn的一般项Qn单调递减且有极限limQn=0,则对于任意的ε>0和正整数n,必存在整数p≥0使得∑Qi>ε(注:此处求和指标中

利用极限存在准则证明:limn趋向于无穷,n【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】=

证明:limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】limn【(1/n^2+nπ)+(1/n^2+nπ)+.(1/n^2+nπ)】=limn(n/(n^2+nπ)=

若limUn=a,证明lim|Un|=|a|.并举例说明,数列|Un|收敛时,数列Un未必收敛

下面所有lim均指n趋于正无穷大时由limUn=a,则任取ε>0,存在N,使得任意n>N有|Un-a|N有||Un|-|a||

1.设X1>a>0,且Xn+1=根号aXn(n=1,2,……),证明limn→∞Xn存在,并求此极限值

1.x(n+1)=√(axn)先证xn有下界:猜想xn>a利用数学归纳法:x1>a假设,当n=k,xk>a则,当n=k+1,x(k+1)=√(axk)>a故,数归成立,xn>a再证xn单调递减:x(n

在无穷等比数列{an}中,limn→∞(a

因为无穷等比数列{an}中,limn→∞(a1+a2+…+an)=12,所以|q|<1,a11−q=12,所以a1=12(1−q),∵-1<q<1且q≠0∴0<a1<1且a1≠12故答案为:(0,12