线性空间V线性变换A在基下的矩阵为,写出A的至少4个2维不变子空间

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/15 06:11:27
T是数域K上的n维线性空间V的一个线性变换,证明:T在任意一组基下的矩阵都相同的充要条件是T是数乘变换

那先随便取定一组基B1,T在这组记下的矩阵设成A.再取另一组基B2两组基间的过渡矩阵P:从B1到B2间的过渡矩阵.(此时B2可以由P唯一决定)T在B2下的矩阵设成C.易知C=P逆*A*P那么这个问题的

T是数域K上的n维线性空间V的一个线性变换,证明:T在任意一组基下的矩阵都相同的充分必要条件是T是数乘变换

知识点:线性变换在不同基下的矩阵相似设T在某基下的矩阵为A.则由已知对任一可逆矩阵P,P^-1AP=A.所以AP=PA所以A为一个数量矩阵kE故线性变换T为数量变换再问:AP=PA则A=kE,有什么依

线性代数 线性空间与线性变换的题目

题目有问题T不是线性变换再问:我也觉得题目有问题没法做谢谢啦

3维线性空间变换p在基a1,a2,a3下的矩阵式是A1 0 0 0 3 1 2 1 2 求线性变换p在基a3,a1,a2

由已知P(a1,a2,a3)=(a1,a2,a3)AA=100031212即有Pa1=a1+2a3Pa2=3a2+a3Pa3=a2+2a3所以P(a3,a1,a2)=(a3,a1,a2)BB=2210

线性变换:设A是数域P上偶数维线性空间V上的线性变换,那么A与-A具有相同的( )

选B:行列式.再问:为什么呢?再答:因为A和-A在同一基下的矩阵B,C满足:B=-C.取行列式有|B|=|-C|=(-1)^n*|C|=|C|.

设向量空间V的线性变换a在基{ε1,ε2,ε3}下的矩阵为A,a能否在某组基下为对角矩阵?

本题相当于问A能不能对角化~A的三个特征值是-1,3,3其中r(A-3E)=1故A可对角化.即命题成立.

设A是线性空间V的一个线性变换,证明下列两个条件是等价的:A把V中某一线性无关的向量变成一组线性相关的

(1)到(2)a1,...,as线性无关Aa1,...,Aas线性相关则存在一组不全为0的数使得k1Aa1+...+ksAas=0所以A(k1a1+...+ksas)=0因为a1,...,as线性无关

设矩阵A,B分别为3维线性空间V中的线性变换T在某两组基下的矩阵,已知1,-2为A的特征值,B的所有对角元的和为5,则矩

由于矩阵A,B分别为3维线性空间V中的线性变换T在某两组基下的矩阵,因此A与B相似∴A与B具有相同的特征值∴1,-2为也B的特征值又B的所有对角元的和为5,即B的所有特征值之和为5又由题意知,B为三阶

线性变换矩阵基α=(a1,...,an),基β=(b1,...,b2)是线性空间V的两组基,α到β的过度矩阵为T,线性变

是根据则a在基β下的矩阵为T^-1AT的定义来的,看下矩阵的基变换定义就知道了再问:要推的就是这结论,用结论证结论?

设A为数域P上的n维线性空间V的线性变换,且A^2=A

(1)两个子空间的和是直和只需要证明它们的交只有零向量.设Y∈ker(A)∩im(A),则AY=0且存在X使Y=AX.∵A²=A,∴Y=AX=A²X=A(AX)=AY=0.即ker

问刘老师,设a为线性空间V的一个线性变换,A为a在某组基下的矩阵

特征值的和等于矩阵的迹tr(A)=a11+a22+...+ann

v是数域p上的n维线性空间,T是v的线性变换.证明,存在v的线性变换S,使得TST=T

不太会证,用矩阵的语言说明思路吧.矩阵T的等价标准型为D=【E0;00】,其中E是单位阵,阶数是T的秩,也就是变换T的像空间的维数.故存在可逆矩阵P,Q使得PTQ=D,令S=QP,则TST=P^(-1

A是线性空间V的一个线性变换,试证如果α,Aα,…A∧k-1α线性无关,而α,Aα,…A∧kα线性相关,那么L(α,Aα

将A作用于L(α,Aα,…A∧k-1α)的基得到Aα,…A∧kα,由于α,Aα,…A∧kα线性相关,所以Aα,…A∧kα均能够由α,Aα,…A∧k-1α线性表出,所以是A-不变子空间;假设U为A-不变

线性变换A在基下的矩阵表示,

圆体的A(α)=【a1,a2,a3】A应该是这样吧

【加急】设1,2是线性空间的两个基,1到2的过渡矩阵为T,若线性变换a在基2下的矩阵为A,则a在基1下的矩阵为?

因为1到2的过渡矩阵为T所以2=1T,即有1=2T^-1因为线性变换a在基2下的矩阵为A所以a2=2A所以a1=a2T^-1=2AT^-1=1TAT^-1即a在基1下的矩阵为TAT^-1.把上过程搞明

A是n维欧氏空间的一个反对称线性变换,为什么这个线性变换在标准正交基下的实反对称矩阵A特征值只能是虚数

结论是错的,因为A的特征值还可以是零,这不是虚数.正确的讲法是实反对称线性变换(或矩阵)的特征值的实部都是零.证明很容易,若A是实反对称矩阵,那么iA是Hermite阵,iA的特征值都是实数.再问:高

设a1……an为向量空间V的基,V的线性变换T在此基下的矩阵为A,则T为单射的充要条件?

选(A)因为对于线性变换T而言,T是单射的充要条件是T是满射(见北京大学“高度代数”教材第7章).故T是单射的充要条件是T是双射,即T可逆.从而T在任意一组基下的矩阵可逆.所以A的行列式不等于0.

设A为数域P上的线性空间V的线性变换,证明:

用反证法.若λ=0是特征值,ξ是对应的特征向量,那么:   Aξ=λξ=0于是,一方面:A^(-1)[Aξ]=A^(-1)[0]=0另一方面:A^(-1)[Aξ]=[A^