矩阵的特征值的特点 证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/12 12:27:26
1、证明对称矩阵是正定矩阵的充要条件是它的特征值都是正数!

1.高等代数上有个定理:对于任意一个n级实对称矩阵A都存在一个n级正交矩阵T,使T'AT成对角型,而对角线上的元素就是它的特征根.由此,开证,(1)充分性:当对称矩阵A的特征根都为正数时,对角型矩阵T

怎么证明矩阵特征值的和等于矩阵的迹

矩阵的特征多项式,你知道吗?xE-A的那个,把行列式展开,是一个n次多项式.由根系关系可得.特征值的和就等于多项式得根得和,就是第n-1次项的系数,是a11+a22+`````+ann总之,你把那个行

设2是矩阵A的特征值,若|A|=4,证明2也是矩阵A*的特征值

由公式AA*=|A|E可以知道,AA*=4E,2是矩阵A的特征值,设特征向量为a那么Aa=2a所以A*Aa=2A*a代入AA*=4E,得到4a=2A*a即A*a=2a那么显然由特征值的定义可以知道,2

怎么证明矩阵A与矩阵A的转置矩阵的特征值相同

设矩阵A经过初等行变换之后,化为上三角矩阵B,则A等价于B矩阵A'经过初等列变换之后,可化为下三角矩阵C,则A'等价于C显然,B的转置矩阵B'=C因为,转置之后对角线上的元素不变,所以,B和C的对角线

怎么证明幂零矩阵的特征值为零

设A^m=0,特征值为c,则有Ax=cx,A^2x=c^2x,以此类推有A^mx=c^mx,由A^m=0有c^m=0,因此c=0,即A的特征值是0

证明实对称矩阵的特征值是实数

设A是一个n*n的实对称矩阵,那么AX=aX(这里a是一个复数)那么两边同取共轭,得到conj(AX)=conj(aX)=conj(a)conj(X)因为A是对称的所以conjA=A成立,那么Acon

怎么证明对称矩阵的所有特征值全是实数

说实称矩阵吧给比较初等办吧A称L特征值E应特征向量D表示共轭转置(数比L即共轭)AE=LE(1)则D(E)AE=LD(E)E=L|E|(2)(1)求共轭转置D(E)A=D(L)D(E)则D(E)AE=

特征值性质λ^m是矩阵A^m的特征值 如何证明?

λ是A的特征值,设X是其对应的一个特征向量.即AX=λX则A^m(X)=A^(m-1)(AX)=A^(m-1)(λX)=λA^(m-1)(X)=λA^(m-2)(AX)=λ²A^(m-2)(

设2是矩阵A的特征值,若1A1=4,证明2也是矩阵A*的特征值

2是矩阵A的特征值,则(1/2)是矩阵A^(-1)的特征值.A*=|A|A^(-1)=4A^(-1),则4*(1/2)是矩阵A*的特征值,即2也是矩阵A*的特征值.

关于证明相似矩阵有相似特征值的问题

|B-λE|=|P^(-1)AP-λE|=|P^(-1)AP-λP^(-1)EP|=|P^(-1)(A-λE)P|=|A-λE|你贴的等式里面多了一个P(或者理解成漏了一个P^{-1})

证明 实对称矩阵是正定矩阵的充要条件是它的特征值都是正数

1.高等代数上有个定理:对于任意一个n级实对称矩阵A都存在一个n级正交矩阵T,使T'AT成对角型,而对角线上的元素就是它的特征根.由此,开证,(1)充分性:当对称矩阵A的特征根都为正数时,对角型矩阵T

如何证明正交矩阵的特征值为1或-1

设λ是正交矩阵A的特征值,x是A的属于特征值λ的特征向量即有Ax=λx,且x≠0.两边取转置,得x^TA^T=λx^T所以x^TA^TAX=λ^2x^Tx因为A是正交矩阵,所以A^TA=E所以x^Tx

一道关于矩阵特征值的证明题,菜鸟~

设是a任意特征值,X≠0是对应的特征向量,则AX=aX,由A^2-3A+2E=0得(A^2-3A+2E)X=0,A^2X-3AX+2X=0,由AX=aX,a^2X-3aX+2X=0,(a^2-3a+2

证明:若矩阵A为正定矩阵,则A的奇异值与特征值相同

对A做谱分解A=QDQ*,显然这一分解也可视作奇异值分解.

设A,B是n阶实矩阵,A的特征值互逆,证明矩阵AB=BA的充要条件为A的特征值都是B的特征值

只需证明:若λ是AB的特征值,则λ也是BA的特征值.分两种情况:(1)λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λ

设A为n阶反称矩阵,证明:如果 入.是矩阵A的特征值,则 -入.也是A的特征值.

由已知,|A-λE|=0又因为A^T=-A所以有|A+λE|=|(A+λE)^T|=|A^T+λE|=|-A+λE|=(-1)^n|A-λE|=0所以-λ也是A的特征值.

怎么证明对称矩阵的所有特征值之和大于等于其最大特征值

对于ATA这样的矩阵才有这个性质,用二次型来证明,不懂再留言吧