特征值的和等于矩阵的迹

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/29 05:47:33
矩阵A的行列式等于0,A的特征值

因为A的所有特征值的乘积等于A的行列式所以|A|=0时,A一定有特征值0.

求四阶矩阵的行列式和特征值,

把每个牲值回代就可得到特征向量.计算量太大.你自己算吧.再问:好难的说再答:计算量大,难度不大就是概念求解

请教一个矩阵的题,已知三阶非零矩阵,A的平方等于0,求其特征值和Jordan标准型.

A^2=0但A非零,所以A的极小多项式是x^2,所有的特征值都是03阶幂零阵的Jordan型只有三种情况1.三个1阶块2.一个1阶块和一个2阶块3.一个3阶块显然第2种是唯一满足条件的(逐一分析即可)

怎么证明矩阵特征值的和等于矩阵的迹

矩阵的特征多项式,你知道吗?xE-A的那个,把行列式展开,是一个n次多项式.由根系关系可得.特征值的和就等于多项式得根得和,就是第n-1次项的系数,是a11+a22+`````+ann总之,你把那个行

矩阵的特征值和特征向量

显然(A),(B),(C)正确,(D)错误,你哪个选项不理解

已知特征值和某个特征值的特征向量如何求矩阵特征值所属的矩阵?

这个问题就复杂了.如果知道一个特征值的特征向量的话,很多时候都是不可求的,少数是可求的.可求的情况:矩阵为对称矩阵,无其他的特征值于知道特征向量的特征值相同时,且其他的特征值相同,可求因为不同的特征值

求下列矩阵的特征值和特征向量

|A-λE|=1-λ11111-λ-1-11-11-λ-11-1-11-λri+r1,i=2,3,41-λ1112-λ2-λ002-λ02-λ02-λ002-λc1-c2-c3-c4-2-λ11102

[考研 线性代数]"特征值的和等于矩阵主对角线上元素之和"怎么证明?

写出行列式|λE-A|根据定义,行列式是不同行不同列的项的乘积之和要得到λ^(n-1)只能取对角线上元素的乘积(λ-a11)(λ-a22)...(λ-ann)所以特征多项式的n-1次项系数是-(a11

矩阵对角线上的和等于特征值之和

对.矩阵对角线上的值之和称为矩阵的“迹”,记作tr(A)可以证明,任何两个相似的矩阵,其"迹"相等.相似矩阵的特征值是一样的,所以A的特征值可以等于某个上三角矩阵的特征值.上三角矩阵的迹就是其特征值之

知道矩阵的特征值和特征向量怎么求矩阵

由于Aα1=λ1α1,Aα2=λ2α2,所以A[α1α2]=[α1α2]diag(λ1λ2),其中[α1α2]为由两个特征向量作为列的矩阵,diag(λ1λ2)为由于特征值作为对角元的对角矩阵.记P=

求解个矩阵的特征值和特征向量

第三题r(α1,α2,α3,α4)=4极大无关向量组α1,α2,α3,α4第四题由Aα=λα可得|Aα-λα|=0∴|A-λα|=0∴λ³-4λ²+λ-2=0λ=3.8751297

线性代数求这道题的矩阵和特征值,

|A-λE|=1-λ0-101-λ0-101-λ=(1-λ)[(1-λ)^2-1]=-λ(1-λ)(2-λ).A的特征值为0,1,2AX=0的基础解系为a1=(1,0,1)'.A的属于特征值0的所有特

矩阵进行初等变换会改变迹,但是特征值不变,但是迹又等于特征值的和,这不是矛盾吗?

初等变换会改变矩阵的特征值.只有相似变换不改变矩阵的特征值,一般的其他的变换都会改变特征值的.

求矩阵的特征向量和特征值...

|λE-A|=||λ.-4.-2||-4.λ.-8||-2.-8.λ-8|则|λE-A|=|0.-4-4λ.λ^2/2-4λ-2||0.λ+16.8-2λ||-2.-8..λ-8|令|λE-A|=0,

高等代数,线性代数 矩阵A(n×n)的秩为1.那么他的特征值等于什么? 主要是想求证明:特征值的和=矩阵的迹

分析:因为A的秩等于1,所以A的行向量中有一行非零(记为α,不妨记为列向量)且其余行都是它的倍数.将这些倍数构成列向量β,β≠0则有A=βα^T.如:A=246123000则α=(1,2,3)^T,β

什么叫 矩阵的特征向量 和特征值?

只说定义吧[意义,太重要.用途,太多.几句话说不清,不说了!]n阶方阵A,行列式|λE-A|[E是n阶单位矩阵,λ是变量.这是λ的n次多项式,首项系数是1]叫做A的特征多项式,[f(λ)=|λE-A|

求矩阵的特征限量和特征值

按照第三行展开=1*(-3+2(λ+3))+(λ+2)【(λ-2)(λ+3)+5】=(λ+3)(2+λ^2-4)-3+5(λ+2)=(2λ+λ^3-4λ+6+3λ^2-12-3+5λ+10=λ^3+3

求矩阵的特征方程和特征值

写出特征矩阵λ-1-2-3λ-4由方程(λ-1)(λ-4)-6=0求出特征值λ1=5/2-√33/2λ2=5/2+√33/2

特征值和可逆矩阵的关系

|A|=0说明A有特征值0,于是A的全部三个特征值为0,1,2则A^2的全部三个特征值为0,1,4,则-1不是A^2的特征值,于是|I+A^2|=-|-I-A^2|不等于零,于是A^2+I为可逆矩阵.