怎么解释非齐次线性方程组的解也是其次方程组的解

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/15 19:29:05
线性代数非齐次线性方程组解

因为AX=0的解空间维数为n-r(A)而a2-a1,a3-a1是导出组AX=0的两个线性无关的解那么这两解应该包含在解空间中所以2

线性方程组解的问题

系数矩阵的行列式=λ111λ111λ=(λ+2)(λ-1)^2.当λ≠1且λ≠-2时,由Crammer法则知有唯一解.当λ=1时,增广矩阵为111-2111-2111-2->111-200000000

非齐次线性方程组有解的条件是

设Ax=b,A是m×n矩阵,Ax=b有解当且仅当秩(A)=秩(A,b)Ax=b有唯一解当且仅当秩(A)=秩(A,b)=n

这个线性方程组怎么解?

其实这个题不应该都乘开,整体考虑系数矩阵为25-(3+k)3+k2-2-1-(3+k)5设t=3+k,那么系数矩阵变为25-tt2-2-1-t5按照第一列展开,可以整理得到:2(10-2t)-t(25

线性方程组的一般解怎么求

一两句话说不清楚,你看看教材中的例题吧

关于非齐次线性方程组的解问题,

非齐次线性方程组AX=b中未知量的个数为n,方程个数为m,R(A)=r,则在n>m时,映射Ax系统可以将n维空间的点映射到m维空间中的r维子空间,且是满射,在m=r时,就是到m空间的满射,因此,对于m

非齐次线性方程组解的结构

A,B都不对因为基础解系是α-β=(13,-5,3)^T是不是还有别的选择?再问:呵呵,那是2,手误,通解(13,-5,-1)

线性方程组的一般解

1121113250-10012421547056经初等行变换化为100-3-100102650011-2-2000000一般解为(0,5,-2,0,0)^T+k1(3,-2,-1,1,0)^T+k2

非齐次线性方程组的特解怎么求啊

增广矩阵进行初等行变换(有解前提下)化成简化的阶梯型矩阵,就能看出特解了再问:已经解决了呵呵

求下列非齐次线性方程组的解

增广矩阵(A,b)11-3-113-1-34415-9-80r2-3r1,r3-r1得11-3-110-467104-6-7-1r3+r2得11-3-110-467100000-r2/4得11-3-1

非齐次线性方程组全部解

再问:那第二行和第三行相同了那不是行列式就是零了么。那怎么求?再答:这个不是方阵,,,不需要用克拉默法则。。。。直接求解就可以了。。。化成行阶梯形矩阵

非齐次线性方程组 解以下线性方程组

利用矩阵的计算原方程组可化为如下矩阵11115111151111512-14-201-23701-23-72-3-1-5-2===>0-5-3-7-12===>00-138-473121100-2-1

非齐次线性方程组的特解唯一吗?

若其导出组Ax=0有非零解则非齐次线性方程组有解的情况下特解不是唯一的这是因为非齐次线性方程组的解加齐次线性方程组的解仍是非齐次线性方程组的解非齐次线性方程组的任一解都可视作它的特解.

线性方程组的基础解系怎么求

X1=4*X3-X4+X5;X2=-2*X3-2X4-X5.基础解系:b1=(4,-2,1,0,0)T,b2=(-1,-2,0,1,0)T,b3=(1,-1,0,0,1)T.

非齐次线性方程组的问题

线性齐次方程有基础解系,非线性齐次方程解由基础解系和特解两部分组成,所以非齐次也有基础解系

线性方程组解的结构

由R(A)=3知Ax=0的基础解系只含4-3=1个解向量,就是ξ=2η1-(η2+η3),所以Ax=b的通解是kξ+η1.

非齐次线性方程组有解的条件有几种

设AX=b是非齐次线性方程组则Ax=b有解的充分必要条件是r(A)=r(A,b),即系数矩阵的秩等于增广矩阵的秩.这等价与向量b可由A的列向量组线性表示(这是从向量的角度解释,很重要)

线性代数怎么解这个非齐次线性方程组

21-11142-21221-1-11第二行减2倍第一行,第三行减去第一行并化简21-11121-10100000---------->>>00010000-2000000x4=0,令x2=0,x3=

非齐次线性方程组的通解

增广矩阵=273163522494172r3-3r2,r2-r1273161-2-11-20-11-51-10r1-2r20115-1101-2-11-20-11-51-10r3+r1,r1*(1/1

非齐次线性方程组有解的充要条件是什么?通解怎么求

R(A)=R(A,b)不能用行列式判断!求解需要进行初等变换,就可以了!