已线矩阵方程f(A)=0,证明g(A)可逆并求其逆值

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/13 19:13:49
求解【线性代数】 设A是n阶矩阵, ⑴若A满足矩阵方程A²-A+I=O,证明:A和I-A都可逆,并

2题的解法一样 根据要证明可逆的矩阵凑积=单位矩阵的多项式 2题过程如下图: 

已知A是n阶矩阵,且满足方程A2+2A=0, 证明A的特征值只能是0或-2.

证明:设a是A的特征值,则a^2+2a是A^2+2A的特征值而A^2+2A=0,零矩阵的特征值只能是0所以a^2+2a=0所以a(a+2)=0所以a=0或a=-2即A的特征值只能是0或-2.

已知实n阶矩阵A具有n个两两不同的特征值.f(λ)=|λE-A| 是A的特征多项式.证明:矩阵f(A)=0

证明:设a1,a2,...,an是A的n个不同的特征值.则存在可逆矩阵P,使P^-1AP=diag(a1,...,an)=B(记为B)即有A=PBP^-1.又f(λ)=|λE-A|=(λ-a1)(λ-

A是m*n矩阵,B是n*m矩阵,m>n,证明:|AB|=0

R(A)和R(B)的秩都小于等于n,而AB是m*m的方阵,m>n,所以AB不是满秩阵,所以|AB|=0

设方阵A满足矩阵方程A^2+A-7E=0,证明A,A+E,A-2E均可逆,并求其逆

1,A(A+E)=7E,所以,A,A+E可逆,A^(-1)=(A+E)/7,(A+E)^(-1)=A/72,A^2+A-7E=0,A^2+A-6E=E,(A+3E)(A-2E)=E,所以A-2E可逆,

多项式 矩阵 如果矩阵满足多项式f(A)=O,那么是不是所有满足多项式f(x)=0的值都是矩阵A的特征值?怎么证明?或者

若f(A)=0,则A的特征值一定满足f(x)=0,但是反过来不成立.反例很简单:取A=E,f(x)=x²-1,则A的特征值只有1,但f(x)的根有1和-1.正面的证明可以使用这一结论:若λ是

线性代数矩阵证明题有三阶实对称矩阵A,A平方=0,用对角化法证明A=0

A是实对称矩阵,存在可逆矩阵P,使得P^(-1)AP=diag(λ1,λ2,λ3)A=Pdiag(λ1,λ2,λ3)P^(-1)A^2=[Pdiag(λ1,λ2,λ3)P^(-1)][Pdiag(λ1

设n阶方阵A满足A^3=0,则下列矩阵 B=A-E,C=A+E,D=A^2-A,F=A^2+A中可逆矩阵是,并证明

证明:A³-E=-E即(A-E)(A²+A+E)=-E所以,(A-E)^(-1)=-(A²+A+E)B可逆A³+E=E有(A+E)(A²-A+E)=E

设A为n阶方阵,e为n阶单位矩阵,满足方程A²-3A-E=0,证明A可逆

A²-3A-E=0A^2-3A=EA(A-3E)=E因此A可逆,且其逆矩阵为A-3E

若方阵A满足方程A平方-2A+3I=0,则A,A-3I都可逆,并求它们的逆矩阵,如何证明?

证明:因为A^2-2A+3I=0所以A(A-2I)=-3I所以A可逆,且A^-1=(-1/3)(A-2I).又由A^2-2A+3I=0得A(A-3I)+A-3I+6I=0所以(A-3I)(A+I)=-

若A是n阶矩阵,f(x)是一个常数项不为零的多项式,且满足f(A)=0,证明:A的特征值一定

设λ是A的特征值,则f(λ)是f(A)的特征值.而f(A)=0所以f(λ)=0(零矩阵只有0特征值).又因为f(x)是一个常数项不为零的多项式.故必有λ≠0.即A的特征值都不为0.题目是不是有误啊!

设方阵A满足方程A^2-2A+4I=0,证明A+I和A-3I都可逆,并求他们的逆矩阵.

A^2-2A+4I=0A^2-2A-3I=-7I(A+I)(A-3I)*(-1/7)=I所以A+I和A-3I都可逆,且A+I的逆矩阵为(3I-A)/7A-3I的逆矩阵为-(A+I)/7

如何证明矩阵特征值方程

设K是矩阵A的特征值,X是对应K的矩阵A的非零的特征向量.则,AX=KX,(A-KI)X=0,若DET(A-KI)不等于0.则,方程(A-KI)X=0只有唯一的解X=0.与X非零矛盾.因此,DET(A

设矩阵A的特征多项式为f(λ),则f(A)=0怎么证明?这定理叫什么名字

Cayley-Hamilton定理.楼上的证明错误,特征值全为0的矩阵不一定是0矩阵.因为A复相似于上三角阵T,只需要对上三角阵T证明,验证f(T)的每一列都是0即可.

设A为n阶正定矩阵,x=(x1,x2,x3,.xn)T,证明:f(x)=| A x |为负定矩阵.| xT 0 |

题目中的“f(x)为负定矩阵”应为“f(x)为负定二次型”.详细解答见图片[参考文献]张小向,陈建龙,线性代数学习指导,科学出版社,2008.周建华,陈建龙,张小向,几何与代数,科学出版社,2009.

设A是n阶矩阵,若A满足矩阵方程A*A-A+I=0,证明:A和I-A都可逆,并求它们的逆矩阵

A*A-A+I=0所以A*(A-I)=-I所以|A*(A-I)|=|A|*|A-I|=|A|*|I-A|=|-I|0所以|A|,|I-A|都不等于0,所以A和I-A都可逆

设A,B为n阶矩阵,如果B为矩阵方程AXA=A的唯一解,证明:A为矩阵方程BXB=B的解

A进行LU分解,使得L行满秩,U列满秩,令X=U'(U'U')^-1(LL')^-1L'AXA=LUU'(U'U')^-1(LL')^-1L'LU=A可以看出X=U'(U'U')^-1(LL')^-1

设A是m*n矩阵,B是m*s矩阵,证明矩阵方程A'AX=A'B一定有解(其中A'为A的转置矩阵)

只需证明A'A的秩等于(A'A,A'B)的秩,即r(A'A)=r(A'A,A'B)首先r(A'A)

设矩阵满足方程A^2-A-2E=0,证明A与(A-E)都可逆,并求(A-E)

由A^2-A-2E=0可向A(A-E)=2E所以A的逆为(A-E)/2(A-E)的逆为A/2所以A与(A-E)都可逆(A-E)的逆是A/2