已知如图bd垂直am

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 08:15:27
如图,已知AB=AD,CB=CD.求证:AC垂直平分BD

∵AB=AD,CB=CD.且AC为公共边,∴△ABC≌△ACD(SSS)∴∠BAC=∠DAC∴△ABO≌△AOD(SAS)∴∠AOB=∠AOD=90°,OB=OD即AC垂直平分BD

已知:如图,AB垂直BD,CD垂直BD,AD=BC.求证:(1)AB=DC,(2)AD//BC

证三角形ABD全等于三角形BCD再答:AB平行且等于CD四边形ABCD是平行四边形

已知,如图,AB垂直BD,ED垂直BD,c是BD上的一点,BC=DE,AB=cD.求证:AC垂直CE

 证明:如图,∵AB⊥BD,ED⊥BD      ∴∠B=∠D=90°     

如图,AC与BD相交于点O.已知AD垂直于BD,BC垂直于AC,AC等于BD,则OA=OB.

因为AD垂直于BD,BC垂直于AC,所以三角形ABD,和三角形ABC都是直角三角形.又因为AC=BD,AB是公共边,根据勾股定理,则AD=BCAC与BD相交于O所以角AOD等于角BOC又角ADO=角B

如图,已知AB垂直BD,ED垂直BD,AC垂直CE,且AB等于CD,求证:AC等于CE.

因为两个三角形为直角三角形,所以角A+角ACB=90°,因为AC垂直于CE,所以角ACB+角DCE=90°,所以角A=角DCE.又因为角B=角D=90°,AB=CD,所以三角形ABC全等于三角形CDE

已知如图等腰梯形ABCD中,AB平行CD,AD=BC,AC垂直BD,

等腰梯形对角线相等,又因为对角线垂直,所以面积等于对角线乘积的一半,即6×6÷2=18

如图,已知AB垂直平面BCD,BD垂直CD,你能发现那些平面互相垂直,为什么?

平面ABD垂直于平面BCD,因为AB垂直于平面BCD;平面ABC垂直于平面BCD,因为AB垂直于平面BCD;平面ACD垂直于平面ABD,因为CD垂直于BD,且CD垂直于AB(因为AB与平面BCD垂直)

如图,已知梯形ABCD中AD//BC,对角线AC垂直于BD,点M、N为底边BC上的三等分点,且BC=3AD,AM与BD相

因为AD//BC,M,N是3等分点所以有AD//且=BM,AD//且=MN,AD//且=NC所以四边形ADMB,ADNM,ADCN都是平行四边形有AM交BD于G,AC交DN于N所以G,H分别是AM,D

如图,ac于bd相交于点o,已知ad垂直于bd,bc垂直于ac,ac等于bd,则oa等于ob.请说明理由.

证:ad垂直于bd,bc垂直于ac,则角ADB=角ACB=90°而ac等于bd所以AD²=AB²-BD²=AB²-AC²=BC²即AD=BC

已知:如图,平行四边形ABCD中,BD是对角线,AE垂直于BD于点E,CF垂直于BD于点F.试说明:BE=DF

因为AB=CD,角CDE=角ABE(内错角),角CFD=角AEB=90°,所以三角形ABE全等于三角形CDF,所以BE=DF.

如图,在矩形ABCD中,已知对角线AC、BD交于O点.AM垂直BD于M,CN垂直BD于N,AB=2,AD=二倍根号三.试

BD=√(AB²+AD²)=√(2²+(2√3)²)=4∵BM/AB=AB/BD∴BM=AB²/BD=4/(2√3)对角线BD中:MN=BD-BM-N

如图,已知ac,bd是圆o的两条互相垂直的弦,并且ac,bd相交于点r,op垂直bc,oq垂直ad.

连接BO并延长交圆O于E,连接CE,可证∠BCE=90°∵∠ACB+∠ACE=90°,∠ADB+∠CAD=90°,∠ADB=∠ACB﹙等弧﹚∴∠ACE=∠CAD∴弧AD=弧CE∴AD=CE∵PO=1/

如图,已知三角形ABC中,BD垂直AC,问线段BD可以看作是哪个三角形的高?

三角形ABCABDDBC再问:有木有过程再答:因为BD垂直于AC也就垂直于AD、CD(D在AC上)

如图1,已知正方形ABCD的对角线AC、BD相较于点O,E是AC上一点,连接EB,过点A做AM垂直BE,锤足为M,AM交

⑴∠BAF=90º-∠ABE=∠EBCAB=∠BC∠ABF=∠BCE﹙=45º﹚∴⊿ABF≌⊿BCE﹙ASA﹚∴BF=CEOF=OB-BF=OC-CE=OE⑵CB延长交AF于N∠B

已知,如图,AD//BC,且BD垂直CD,BD=CD,AC=BC,求证:AB=BO

图形根据下面的描述自己画出.证明:过A,D分别作AF⊥BC,DE⊥BC,垂足分别为F,E,则四边形AFED为矩形,∴AF=DE,∵BD=CD,DE⊥BC,∠BDC=90°,∴DE=BE=CE=1/2B

如图,在四边形ABCD中,已知AB垂直AD,BD垂直DC,且BD平方=AB*BC.求证BD*AD=AB*DC

证明:∵AB⊥AD,BD⊥DC∴∠BAD=∠BDC=90º∵BD²=AB×BC∴BD/AB=BC/BD∴Rt⊿ABD∽Rt⊿DBC【对应直角边和斜边成比例的直角三角形相似】∴BD/