对弧长的曲线积分,L为连接(0,1)及(1,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/17 12:05:42
计算曲线积分∫L (x^2+2xy)dx+(x^2+y^4)dy,其中L为点(0,0)到点(1,1)的曲线弧y=sin(

用格林公式啊,发现积分与路径无关,然后你就找一条最好简单的路径,比如(0,0)到(1,0)到(1,1),来算,最后1/3+1/5=8/15

如题:设L是由曲线y^3=x^2与直线y=x连接起来的正向闭曲线,计算 (x^2)ydx+y^2dy的曲线积分(积分符号

设C是由曲线y³=x²与直线y=x连接起来的正向闭曲线,计算∮x²ydx+y²dy的曲线积分C:y=x^(2/3),y=x;区域D:由曲线C所围的区域;P=x&

高数题,曲线积分若曲线L为球面x2+y2+z2=a2被平面x+y+z=0所截得的圆周,则第一类曲线积分∫L(x2+y2+

因为曲线L位于圆周上,所以x2+y2+z2=a2故∫L(x2+y2+z2)ds=a2∫Lds=a^2*2PI*a=2PI*a^3

设L是连接O(0,0)及A(1,1)的线段,则曲线积分∫L(X+Y)ds=

连接(0,0)及(1,1)的线段是y=x,dy/dx=1∫L(x+y)ds=∫(0→1)(x+x)√(1+(dy/dx)²)dx=∫(0→1)2x√(1+1)dx=√2*x²|(0

关于对弧长的曲线积分的一个公式的证明?

事实上这种证明过程无需掌握.曲线积分中的ds表示的是弧长元素,也就是弧微分,在上册定积分的应用一章中,利用定积分计算曲线弧长时,得到公式:ds=√[(dx)^2+(dy)^2],当曲线方程是直角坐标方

求曲线积分∫L(x+y)ds,L为连接(1.0)(0.1)两点的直线段. (ps:重点解释下ds怎样转化为dx)

方法一:(1,0)到(0,1)的线段方程为:y=1-x,0≤x≤1由弧微分公式:ds=√(1+y'²)dx=√(1+1)dx=√2dx因此:∫(L)(x+y)ds=∫[0→1](x+1-x)

高等数学中对弧长的曲线积分就是求弧长的大约值吗?

1、第一类对弧长的积分,是计算空间曲线的准确值,不是大约值,是精确值.2、第二类对弧长的积分,计算的不是空间曲线的弧长.如果是数学教师出题,一般都是无聊的纯数学游戏,绝大多数没有任何实质意义.如果是物

高等数学中对弧长的曲线积分转化为定积分计算时,积分弧L的参数t的取值范围

两种方法角度θ或t含义不一样,第一种方法t是(2,0)点和圆上连线的角度,在圆上转一圈,t从0变到2π第二种方法θ是(0,0)点和圆上连线形成的角度,圆上转一圈,θ从-π/2变到π/2

曲线积分的问题计算第二类曲线积分∮y²dx+z²dy+x²dz,L为曲线x²+y

不是用格林公式吧,格林公式是计算平面的.好像题目错了吧,应该往z轴正方向才对,如果是往x轴正方向的话不就是一条线段了,怎么还有方向而言.用斯托克斯公式计算:原式=(-2)∫∫dydz+dzdx+dxd

高数曲线积分为什么这样做啊 不是对坐标的曲线积分吗 怎么变成对弧长的曲线积分了

这里已经告诉你积分路径是一个闭合曲线,但是有些人把它说成是线积分是不对的,线积分的积分元为ds或者有些人用dL,但是这里是对dx积分.看你的解法已经把题目中当成dL去积分了,要么是你题目把dL粗心抄错

2.计算对弧长∫L(x^2+y)ds的曲线积分 ,其中L是:y=2x,点(0,0)到(1,2).

y=2x,则ds=√(1+2²)dx=√5dx∫(x²+y)ds=∫[0→1](x²+2x)√5dx=√5[(1/3)x³+x²]|[0→1]=4√5

求函数xy+yz+zx对弧长的曲线积分,弧长为球面x^2+y^2+z^2=a^2与平面x+y+z

因为xy+yz+zx=(1/2)[(x+y+z)^2-(x^2+y^2+z^2)]=-a^2/2所以∫(xy+yz+zx)ds=∫(-a^2/2)ds=(-a^2/2)∫ds=(-a^2/2)*(2π

对弧长的曲线积分(x^2+y^2)ds,L=x^2+y^2+z^2=2与x+y+z=1的交线

求所截交线的半径,因为所截的是个圆,球心O(0,0,0)到面x+y+z=1的距离为d=1/√3.球的半径R=√2那么r=√[R^2-d^2]=√15/3所以周长L=∫ds=2πr=2π√15/3根据x

高数对弧长的积分问题求曲线积分∮e∧√(x²+y²)ds,其中L为圆周x²+y²

分别计算三条线段的积分:L1x²+y²=a²∫[0,π/4]e^aadθ=[aπe^a]/4L2y=0∫[0,a]e^xdx=e^a-1L3y=x∫[0,√a/2]e^√

计算对弧长的曲线积分∫y^2ds,其中C为右半单位圆周,答案是π/2,

C为右半单位圆周化为参数方程x=costy=sintt∈[-π/2,π/2]∫Cy²ds=∫[-π/2,π/2]sin²t√[(dx/dt)²+(dy/dt)²

计算对弧长的曲线积分∫y^2ds,其中C为摆线x=a(1-sint),y=a(1-cost)(0≤t≤2π),答案(25

计算对弧长的曲线积分∫y²ds,其中C为摆线x=a(1-sint),y=a(1-cost)(0≤t≤2π).C:x=a(1-sint),y=a(1-cost);dx/dt=-acost,dy