4.0 设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/10 23:17:39
线性代数证明题:一、设A,B均为n阶矩阵,切A的平方—2AB=E.证明AB-BA+A可逆

证明:A^2-2AB=EA(A-2B)=E说明A可逆,且A的逆为A-2B上式变形得到B=(A^2-E)/(2A)代入AB-BA+A化简得到AB-BA+A=A(A^2-E)/(2A)-(A^2-E)A/

设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,

提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.

线性代数之证明题2设A为可逆矩阵,证:A的伴随矩阵A*可逆,且A*的逆=A逆的*

因为A可逆,所以|A|!=0由AA*=|A|E,两边取行列式,得|A||A*|=|A|^n由|A|!=0,得|A*|=|A|^(n-1)!=0.所以A*可逆.再由AA*=|A|E,知A*=|A|A逆所

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.

设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).

设n阶可逆矩阵A的一个特征值为λ,A*是A的伴随矩阵,设|A|=d,证明:d/λ是A*的一个特征值.

证:设α是A的属于特征值λ的特征向量,则Aα=λα两边左乘A*得A*Aα=λA*α所以有|A|α=λA*α,即dα=λA*α因为A可逆,所以A的特征值都不等于0所以有(d/λ)α=A*α即d/λ是A*

设λ=2是可逆矩阵A的一个特征值,则矩阵(13

设α是A的特征值2的特征向量,则Aα=2α又A可逆∴α=2A-1α,即A−1α=12α∴(13A)−1α=3A−1α=32α∴32是矩阵(13A)−1的一个特征值.

设x=2是可逆矩阵A的一个特征值,则矩阵(1/3A^2)^-1的一个特征值是多少?请具体证明?

2是A的特征值则2^2=4是A^2的特征值所以4/3是(1/3)A^2的特征值所以3/4是(1/3A^2)^-1的一个特征值再问:则2^2=4是A^2的特征值请证明这句话。再答:这不知道啊,这是教材中

设矩阵A满足A^3-2A^2+9A-E=0,证明A和A-2E都是可逆矩阵,并求出它们的逆矩阵.关键是第二个

1、由于A^3-2A^2+9A-E=0所以A^3-2A^2+9A=E所以A(A^2-2A+9E)=E所以|A|0,所以A可逆,并且A的逆矩阵就是A^2-2A+9E2、由于A^3-2A^2+9A-E=0

设A是n阶非零实矩阵,且A*=AT,证明:A是可逆矩阵

AA^*=|A|E说明AA^*的第一行第一列元素等于|A|E的第一行第一列的元素,而|A|E的第一行第一列的元素为|A|,而AA^*的第一行第一列的元为a11^2+a12^2+...+a1n^2,其他

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

设A是n阶可逆矩阵,证明(A*)*=|A|^n-2A并求|(A*)*|

用伴随阵与逆矩阵的关系如图证明并计算行列式.经济数学团队帮你解答,请及时采纳.

设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1

1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||

设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于?

如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^

设N阶矩阵A可逆,A*为A的伴随矩阵,试证A*也可逆,且(A*)逆矩阵=1/[A]乘以A 万分感激

AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.

关于可逆矩阵的问题(1)A,B,C为n阶矩阵,且AB=BC=CA=E,则A^2+B^2+C^2=还有一题:设n阶矩阵A满

AB=AC=BC=E,可知BA=CA=CB=EA^2+B^2+C^2=(A^2+B^2+C^2)BC=A(AB)C+BB(BC)+C(CB)C=E+BB+CC=(E+BB+CC)AC=E+B(BA)C