右端带有1 4光滑圆弧轨道

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/23 15:17:28
右端带有光滑圆弧轨道质量为M的小车静置于光滑水平面上,以下说法正确的是

问题一平抛相对于底面.题中没有特殊强调的时候,都是以地面为参考系.问题二小球从小车的最高点飞出时在水平方向和小车具有相同的速度Vx,小球离开车后做斜抛运动,水平速度Vx不变,小车做速度为Vx的匀速直线

带有光滑圆弧轨道的小车质量为M,圆弧轨道下端的切线水平,圆弧轨道足够长,静止在光滑水平地面上有一质量为m的小球以水平初速

小球离开小车的时候,速度是水平向右的v0速度(原因是竖直方向机械能守恒,所以重力势能和动能转化完全没有损失),小球和小车构成的系统,在水平方向上动量守恒,所以小球的动量变化完全传递给了小车,所以小车的

2010黄冈模拟的一道物理题:右端带有1/4光滑圆弧轨道质量为M的小车静止在光滑水平面上,

答:设圆弧轨道半径为R,小球质量为m,设小球速度为Vc时,刚好能沿圆弧轨道到达最高点,然后返回.则小球在最高点时与小车有相同速度,设为V1.由却是守恒定律得mVc=(M+m)V1由机械能守恒定律得(1

右端带有1/4光滑圆弧轨道质量为M的小车静置于光滑水平面上,如图所示.一质量为m的小球以速度v0水平冲上小车,关于小球此

整个系统的初动量P=mv0,因为系统置于光滑水平面,符合动量守恒,无论小球最终做什么样的运动,系统水平方向的动量都是P=mv0.设小球离开车速度为v1,车速度为v2.(整个速度都是绝对速度,以地面为参

右端带有光滑圆弧轨道质量为M的小车静置于光滑水平面上,如图所示.一质量为m的小球以速度v0水平冲上小车,小球未从轨道上飞

1、小球上升到最高点时,垂直方向的速度为0,水平方向的速度与小车相同,假设为v1,小球在车上上升的最大高度假设为h.根据动量守恒和能量守恒m*v0=(M+m)*v1(1)1/2*m*v0^2=1/2*

(2014•达州模拟)如图所示,一平板小车静置于光滑水平面上,其右端恰好和一个固定的14光滑圆弧轨道AB的底端等高对接.

(1)滑块从A端下滑到B端,由机械能守恒得mgR=12mv20得v0=2gR=3m/s在B点,由牛顿第二定律得FN-mg=mv20R解得轨道对滑块的支持力FN=3mg=30N由牛顿第三定律可知,滑块对

如图,一质量为M的木板B静止在光滑水平面上,其右端上表面紧靠(但不粘连)在固定斜面轨道的底端(斜面底端是一小段光滑的圆弧

物体沿斜面下滑加速度a=g(sin37-μcos37)=4所以下滑到斜面末端速度v1,2aL=v1^2v1=8m/s设后来共同速度为v2,A与B的质量比m:M=k,A与B共同运动时间为t.A减速v2=

一道疑惑的物理题如图,光滑圆弧轨道与水平轨道平滑相连.在水平轨道上有一轻质弹簧,右端固定在墙M上,左端连接一个质量为2m

我想知道第2问A与B在D点为什么要交换速度,而不是用动量守恒计算?这个问题很好理解的.你分别用能量守恒和动量守恒2个公式写出来就可以推导出来.这个是个定理.实在不行你可以联系生活理解啊.我一说你就明白

带有光滑圆弧轨道的小车质量为M=3kg,圆弧轨道下端的切线水平,圆弧轨道足够长,静止在光滑水平地面上有一质量为m=1kg

能量守恒:1/2mv.·v.=1/2Mv1·v1+1/2mv2·v2动量守恒:mv.=Mv1+mv2得出v1=1m/s所以小球队小车做的功为1/2Mv1·v1=1.5(J)

光滑水平面上有带有四分之一光滑,半径为R的圆弧轨道的滑块,质量为M,一质量为m的小球以Vo的速度沿平面滑上轨道,并从轨道

当物体到达圆弧的最高处正要离开时设速度为V:由能量守恒有1/2m(Vo)^2=1/2m(V)^2+mgR可以求出速度V然后物体以速度V从轨道最高处上升由公式2gh=V^2可以求出hh表示物体离开圆弧轨

如图所示,左端带有半径为R的四分之一圆弧的光滑轨道静止于光滑的水平面上,轨道右端安装了一个减振装置,光滑轨道的质量为2M

(1)对小球A下滑的过程,由动能定理得:MgR=12Mv02-0对小球A在最低点受力分析,由牛顿第二定律得:FN-Mg=Mv02R解得:F=3Mg,由牛顿第三定律可知,A球对轨道压力大小为3Mg.(2

(2014•烟台二模)如图所示,一固定的14圆弧轨道.半径为1.25m,表面光滑,其底端与水平面相切,且与水平面右端P点

(1)物块从14圆弧滑至最低点过程中只有重力做功,根据动能定理有:mgR=12mv2−0得在轨道最低点物块的速度v=2gR=2×10×1.25m/s=5m/s物块在最低点时支持力和重力的合力提供圆周运

一个平板小车置于光滑水平面上,其右端恰好和一个14光滑圆弧轨道AB的底端等高对接,如图所示.已知小车质量M=3.0kg,

(1)A到B过程,由动能定理:mgR=12mvB2---①在B点:N-mg=mv2BR---②联立①②两式并代入数据得:vB=4m/s,N=30N有牛顿第三定律得物块对轨道的压力为15N.(2)对物块

(2013•日照二模)一个平板小车置于光滑水平面上,其右端恰好和一个轨道半径R=0.8m的14光滑圆弧轨道AB的底端等高

(1)滑块从A端下滑到B端,由机械能守恒定律得:mgR=12mv20解得:v0=2gR=2×10×0.8=4m/s   在B点由牛顿第二定律得:FN-mg=mv20R,解

带有1/4光滑圆弧轨道质量为M的滑车静置于光滑水平 怎么做的

题目意思不明确,麻烦修正下再问:题目怎么做,说思路。再答:关键是我没看懂你表达的意思再问:图片啊再答:设小球落下后速度为v1,M速度为v2根据动量守恒mv。=mv1+Mv2再根据能量守恒1/2&nbs

带有1/4圆弧轨道质量为M的M光滑小球v0到达某一高度后小车又反回车的左端

BC第一种:用分解的方法,可发现下落过程中小球对轨道有水平方向的力且没有另外对小车阻碍的力因此有速度第二种:动量守恒的方法,小球飞出小车,m1v1=m2v2,因为一开始都是静止的球的速度v2=(根号2

带有光滑的半径为R的1/4圆弧轨道的滑块静止在光滑水平面上,滑块的质量为M

A、B点在哪里?A点在圆弧上端,B点在下端吗?是高二万有引力的知识吧?再问:A点在圆弧上端,B点在下端再答:由牛顿第二定律得:mgR=1/2mv。^2得v。=根号2gRm与M碰撞,由动能守恒得:mv。