作业帮 > 综合 > 作业

GPS定位卫星 向接收机发射的无线电波都是圆级化波吗?

来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/04/27 21:28:55
GPS定位卫星 向接收机发射的无线电波都是圆级化波吗?
无线电的最早应用于航海中,使用摩尔斯电报在船与陆地间传递信息.现在,无线电有着多种应用http://www.inyue.net形式,包括无线数据网,各种移动通信以及无线电广播等.
以下是一些无线电技术的主要应用:
一.声音
* 声音广播的最早形式是航海无线电报.它采用开关控制连续波的发射与否,由此在接收机产生断续的声音信号,即摩尔斯电码.
* 调幅广播可以传播音乐和声音.调幅广播采用幅度调制技术,即话筒处接受的音量越大则电台发射的能量也越大.这样的信号容易受到诸如闪电或其他干扰源的干扰.
* 调频广播可以比调幅广播更高的保真度传播音乐和声音.对频率调制而言,话筒处接受的音量越大对应发射信号的频率越高.调频广播工作于甚高频段(Very High Frequency,VHF).频段越高,其所拥有的频率带宽也越大,因而可以容纳更多的电台.同时,波长越短的无线电波的传播也越接近于光波直线传播的特性.
* 调频广播的边带可以用来传播数字信号如,电台标识、节目名称简介、网址、股市信息等.在有些国家,当被移动至一个新的地区后,调频收音机可以自动根据边带信息自动寻找原来的频道.
* 航海和航空中使用的话音电台应用VHF调幅技术.这使得飞机和船舶上可以使用轻型天线.
* 政府、消防、警察和商业使用的电台通常在专用频段上应用窄带调频技术.这些应用通常http://www.hao400.org.cn使用5KHz的带宽.相对于调频广播或电视伴音的16KHz带宽,保真度上不得不作出牺牲.
* 民用或军用高频话音服务使用短波用于船舶,飞机或孤立地点间的通讯.大多数情况下,都使用单边带技术,这样相对于调幅技术可以节省一半的频带,并更有效地利用发射功率.
* 陆地中继无线电(Terrestial Trunked Radio, TETRA)是一种为军队、警察、急救等特殊部门设计的数字集群电话系统.
二.电话
* 蜂窝电话或移动电话是当前最普遍应用的无线通信方式.蜂窝电话覆盖区通常分为多个小区.每个小区由一个基站发射机覆盖.理论上,小区的形状为蜂窝状六边形,这也是蜂窝电话名称的来源.当前广泛使用的移动电话系统标准包括:GSM,CDMA和TDMA.少数运营商已经开始提供下一代的3G移动通信服务,其主导标准为UMTS和CDMA2000.
* 卫星电话存在两种形式:INMARSAT 和 铱星系统.两种系统都提供全球覆盖服务. INMARSAT使用地球同步卫星,需要定向的高增益天线.铱星则是低轨道卫星系统,直接使用手机天线
三.电视
* 通常的模拟电视信号采用将图像调幅,伴音调频并合成在同一信号中传播.
* 数字电视采用MPEG-2图像压缩技术,由此大约仅需模拟电视信号一半的带宽.
四.紧急服务
* 无线电紧急定位信标 (emergency position indicating radio beacons,EPIRBs), 紧急定位发射机或 个人定位信标是用来在紧急情况下对人员或测量通过卫星进行定位的小型无线电发射机.它的作用是提供给救援人员目标的精确位置,以便提供及时的救援.
五.数据传输
* 数字微波传输设备、卫星等通常采用正交幅度调制(Quadrature Amplitude Modulation,QAM).QAM调制方式同时利用信号的幅度和相位加载信息.这样,可以在同样的带宽上传递更大的数据量.
* IEEE 802.11是当前无线局域网的标准.它采用2GHz或5GHz频段,数据传输速率为11 Mbps或54 Mbps.
六.辨识
* 利用主动及被动无线电装置可以辨识以及表明物体身分.
七.导航
* 所有的卫星导航系统都使用装备了精确时钟的卫星.导航卫星播发其位置和定时信息.接收机同时接受多颗导航卫星的信号.接收机通过测量电波的传播时间得出它到各个卫星的距离,然后计算得出其精确位置.
* Loran系统也使用无线电波的传播时间进行定位,不过其发射台都位于陆地上.
* VOR系统通常用于飞行定位.它使用两台发射机,一台指向性发射机始终发射并象灯塔的射灯一样按照固定的速率旋转.当指向型发射机朝向北方时,另一全向发射机会发射脉冲.飞机可以接收两个VOR台的信号,从而通过推算两个波束的交点确定其位置.
* 无线电定向是无线电导航的最早形式.无线电定向使用可移动的环形天线来寻找电台的方向.
八.雷达
* 雷达通过测量反射无线电波的延迟来推算目标的距离.并通过反射波的极化和频率感应目标的表面类型.
* 导航雷达使用超短波扫描目标区域.一般扫描频率为每分钟两到四次,通过反射波确定地形.这种技术通常应用在商船和长距离商用飞机上.
* 多用途雷达通常使用导航雷达的频段.不过,其所发射的脉冲经过调制和极化以便确定反射体的表面类型.优亮的多用途雷达可以辨别暴雨、陆地、车辆等等.
* 搜索雷达运用短波脉冲扫描目标区域,通常每分钟2-4次.有些搜索雷达应用多普勒效应可以将移动物体同背景中区分开来
* 寻的雷达采用于搜索雷达类似的原理,不过对较小的区域进行快速反复扫描,通常可达每秒钟几次.
* 气象雷达与搜索雷达类似,但使用圆极化波以及水滴易于反射的波长.有些气象雷达还利用多普勒效应测量风速.
九.加热
* 微波炉利用高功率的微波对食物加热.(注:一种通常的误解认为微波炉使用的频率为水分子的共振频率.而实际上使用的频率大概是水分子共振频率的十分之一.)
十.动力
* 无线电波可以产生微弱的静电力和磁力.在微重力条件下,这可以被用来固定物体的位置.
* 宇航动力: 有方案提出可以使用高强度微波辐射产生的压力作为星际探测器的动力.
十一.天文学
* 是通过射电天文望远镜接收到的宇宙天体发射的无线电波信号可以研究天体的物理、化学性质.这门学科叫射电天文学.
十二. 气象
探测一定范围内大气中风暴、云、雨、风和晴空湍流等气象要素的雷达称之为气象雷达.
雷达探测的原理是,从雷达天线定向发射出的脉冲无线电波在碰到目标物体时,就有一部分电波散射返回.回波被雷达接收机接收后,目标物便能在屏幕上显示出来.根据发射波束的指向可以确定目标物的方向,根据接收到回波的时间可以确定目标物的距离.
气象雷达的种类很多,例如,利用无线电波在云雨中散射的原理,研究降水而设计的称"测雨雷达";在地面追踪大气中飘移的反射体,以接收其所反射的无线电波,或接收空中探空仪上回答器发出的无线电波,用以测量高空风向、风速的称"测风雷达";按无线电波的多普勒效应,研究大气中,特别是云雨中粒子运动等的特性的称"多普勒雷达".
用雷达探测云雨时,雷达回波越强,表明云中的水滴越多,暴雨的强度也越强.据记载,最早是美国在1943年专门制造出雷达来探测大气云雨风暴.
雷达可以在几百公里范围内迅速地发现雷阵雨、龙卷风、台风等强风暴系统,还可以确定降水强度,空中激烈的颠簸区等等.测雨雷达由于能够监视暴雨、冰雹等局地强对流灾害性天气,因而发展很快.70年代开始诞生的气象多普勒雷达.它和一般测雨雷达的区别是,由于它改进了脉冲无线电波的发射机和接收机,接收到的回波讯号码除了普通雷达也能收到的回波强度以外,还有回波的位相差异,这样就不仅能了解云雨区的位置和强度,而且还可以进一步得到云雨区中的风场的情况.而风场(包括垂直气流)变化又是决定云雨天气系统强度变化的主要因素.因此天气多普勒雷达现在已经成为警戒强风暴强对流天气的有力工具,大大增强了防灾抗灾的能力.
随着雷达技术和理论研究的不断发展,各种雷达作为新的探测工具将会起到更大的作用.
十三.其它
* 业余无线电是无线电爱好者参与的无线电台通讯.业余无线电台可以使用整个频谱上很多开放的频带.爱好者使用不同形式的编码方式和技术.有些后来商用的技术,比如调频,单边带调幅,数字分组无线电和卫星信号转发器,都是由业余爱好者首先应用的.