作业帮 > 数学 > 作业

1 焦点在x轴上的双曲线过点M(5,—9/4),又点N(0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/05/16 18:01:17
1 焦点在x轴上的双曲线过点M(5,—9/4),又点N(0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.
2若一个动点P到两定点A(—1,0),B(1,0)的距离差的绝对值为2a,求点P的轨迹方程,并说明轨迹的形状.
3经过点P(0,1)的直线L与圆x2+y2=r2 相切,且与双曲线x2—2y2=r2 有两个交点,判断直线L能否过双曲线的右焦点?如果能,求出L的方程.
4 求直线3x—y+3=0被双曲线4x2—y2—4=0所截得的线段长
5已知动圆C与 定圆C1:(x+5)2 +y2=49 C2:(x-5)2+y2=1 都外切,求动圆圆C的轨迹方程.
1,类似题目:焦点在X轴上的双曲线过点P(4倍根号2,-3),且点Q(0,5)与两焦点的连线互相垂直,求此双曲线标准方程
据题意设双曲线方程:x^2/a^2 - y^2/b^2 =1
∵点Q(0,5)与两焦点的连线互相垂直
∴(5/c)×(-5/c)=-1
∴c=±5
则:a^2+b^2=25
∵双曲线过点P(4倍根号2,-3)
∴32/a^2 - 9/b^2 =1
解得:a^2=50 或 a^2=16
∵a^2+b^2=25
∴a^2=16 ,b^2=9
∴双曲线标准方程:x^2/16 -y^2/9 =1
2类似题目:若平面内一个动点P(X,Y)到两个定点A(-1,0)A'(1,0)的距离差的绝对值为定值a,求点P的轨迹方程
椭圆的定义
c=1,2A=a得
点P的轨迹方程为
x的平方/(a的平方/4)-y的平方/(1-a的平方/4)=1
4类似题目直线y=x-3被双曲线X^2 /4 -y^2=1所截得的线段长等于
x^2/4-(x-3)^2=1
x^2-4x^2+24x-36=1
3x^2-24x+37=0
x1+x2=8,x1*x2=37/3
(x1-x2)^2=(x1+x2)^2-4x1*x2=44/3
(y1-y2)^2=[(x1-3)-(x2-3)]^2=(x1-x2)^2=44/3
所以长度^2=(x1-x2)^2+(y1-y2)^2=88/3
所以长度=(2/3)√66
5 答案;;分析:(1)从已知条件可以确定圆C1、C2的圆心与半径.
(2)两圆外切可得:两圆半径和=圆心距
(3)动圆半径r,依题意有
r1 + r = | P C1 | ,
r2 + r = | P C2 |
两式相减得:| PC1 | -- | PC2 | = r1 – r2
< | C1 C2|
(4)由双曲线定义得:点P的轨迹是C1 、C2以为焦点的双曲线的右支.
(5)再根据题设条件求出参数a、b即可.
答案:X^2/9-Y^2/16=1(X大于等于3)