已知动直线y=kx交圆(x-2)^2+y^2=4于坐标原点O和点A,交直线x=4于点B,若动点M满足向量OM=向量AB,
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/01 07:10:04
已知动直线y=kx交圆(x-2)^2+y^2=4于坐标原点O和点A,交直线x=4于点B,若动点M满足向量OM=向量AB,动点M的轨迹C的方程为F(x,y)=0
(1)试用k表示点A,点B的坐标
(2)求动点M的轨迹方程F(x,y)=0
(1)试用k表示点A,点B的坐标
(2)求动点M的轨迹方程F(x,y)=0
(1) 将y=kx代入(x-2)^2+y^2=4
得:(x-2)^2+(kx)^2=4
舍去x=0,y=0的情况
整理得:(1+k^2)x=4
所以:
x=4/(1+k^2)
y=4k/(1+k^2)
即A(4/(1+k^2) ,4k/(1+k^2))
将x=4代入y=kx
则B(4 ,4k)
k为任意实数
(2)
设点M坐标为(x,y)
则
x^2+y^2=(4k-4k/(1+k^2))^2+(4-4/(1+k^2))^2
整理得
x^2+y^2-(16k^4)/(k^2+1)=0
即F(x,y)=x^2+y^2-(16k^4)/(k^2+1)=0
因为 点O,A,B都在直线y=kx上,A点始终在B点左侧,或重合(重合时k=0)
若要满足向量OM与向量AB通向,则M点只能在y轴右侧或与O点重合
则F(x,y)=0,其中x>=0
得:(x-2)^2+(kx)^2=4
舍去x=0,y=0的情况
整理得:(1+k^2)x=4
所以:
x=4/(1+k^2)
y=4k/(1+k^2)
即A(4/(1+k^2) ,4k/(1+k^2))
将x=4代入y=kx
则B(4 ,4k)
k为任意实数
(2)
设点M坐标为(x,y)
则
x^2+y^2=(4k-4k/(1+k^2))^2+(4-4/(1+k^2))^2
整理得
x^2+y^2-(16k^4)/(k^2+1)=0
即F(x,y)=x^2+y^2-(16k^4)/(k^2+1)=0
因为 点O,A,B都在直线y=kx上,A点始终在B点左侧,或重合(重合时k=0)
若要满足向量OM与向量AB通向,则M点只能在y轴右侧或与O点重合
则F(x,y)=0,其中x>=0
直线kx-y+1=0与圆x^2+y^2=4相交于A,B两点,若点M在圆上且有向量OM=向量oa+向量ob(o为坐标原点)
已知过抛物线y^2=4X的焦点F的直线交抛物线于AB两点,过原点O作OM向量,使OM向量垂直AB向量,垂足为M,求点M的
已知抛物线X^2=4y,过点A(0,1)任意作一条直线l交抛物线C于M.N,O为坐标原点,(1),求向量OM乘向量ON
已知圆(x-2)2+y2=9和直线y=kx交于A,B两点,O是坐标原点,若向量OA+向量OB=0向量,则向量AB的模=?
已知圆(x-2)的平方+y的平方=9和直线y=kx交于A、B两点,O是坐标原点,若向量OA+2OB=向量0,则|向量AB
已知直线y=x-2与x^2+y^2=4交于两点M和N,O是坐标原点,则向量OM*向量ON=
已知抛物线y^2=2x,直线AB交抛物线于AB两点,交X轴正半轴于点M(m,0),若向量OA×向量OB=0(O为坐标原点
设椭圆方程为X^2+Y^2/4=1.过点M(0.1)的直线L交椭圆于点A,B两点,O为坐标原点,P满足OP向量=1/2(
已知过抛物线y^2=4x的焦点F 的直线交抛物线与AB 两点,过原点o作向量OM,使向量OM垂直于向量AB 垂足为M ,
在平面直角坐标系中,O是坐标原点,直线y=kx+b(k不等于0),经过点A(2,4) 与x轴交于点M,与y轴交于点N,若
已知直线x+y=a与圆x^2+y^2=4交于A,B两点,O是坐标原点,向量OA,OB满足|OA+OB|=|OA-OB|,
关于椭圆与向量直线y=kx+√2与椭圆x^2/3+y^2=1交于不同点A和B,且向量OA点乘向量OB等于1,其中O为坐标