作业帮 > 数学 > 作业

L为平面上任意不经过原点的逆时针圆周,试计算封闭曲线积分∫L(xdy-ydx)/(x^2+4y^2

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/05/22 05:28:57
L为平面上任意不经过原点的逆时针圆周,试计算封闭曲线积分∫L(xdy-ydx)/(x^2+4y^2
1、当原点不在曲线内时,P=-y/(x²+4y²),Q=x/(x²+4y²),P、Q在L内具有一阶连续偏导数
计算得:∂P/∂y=∂Q/∂x,由格林公式易得封闭曲线上积分为0,本题结果=0
2、当原点在曲线内时,此时P、Q在(0,0)无定义,所以上面的方法不能用.
作曲线L1:x²+4y²=ε²,逆时针,ε充分小,使得L1与L不相交;
用 L1- 表示L1的反向曲线(注意负号是上标)
则P、Q在(L+L1-)所围区域内具有一阶连续偏导数,可以使用格林公式
∫(L+L1-)(xdy-ydx)/(x^2+4y^2)
=∫∫ (∂Q/∂x-∂P/∂y)dxdy
=0
因此得:∫L(xdy-ydx)/(x^2+4y^2)=∫L1(xdy-ydx)/(x^2+4y^2)
下面计算L1上积分即可
∫L1(xdy-ydx)/(x^2+4y^2)
注意在L1上x²+4y²=ε²
=(1/ε²)∫L1 (xdy-ydx)
格林公式
=(1/ε²)∫∫ 2 dxdy
=(2/ε²)∫∫ 1 dxdy
被积函数为1,积分结果为区域面积,椭圆面积为:πab=πε²/2,其中a=ε,b=ε/2
=(2/ε²)*(πε²/2)