∫∫2xydxdy,D是由两坐标轴及x y=2围成

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/15 04:30:44
已知二重积分区域D由直线y=x,圆x^2+y^2=2y,以及y轴围成,求二重积分∫∫xydxdy

用极坐标,x²+y²=2y的极坐标方程为:r=2sinθ∫∫xydxdy=∫∫r³cosθsinθdrdθ=∫[π/4→π/2]cosθsinθdθ∫[0→2sinθ]r

求助二重积分的计算!∫∫(3x+2y)dxdy,其中D是由两坐标轴及直线x+y=2所围成的闭区域. D

思路:分部积分先将(3x+2y)关于y从0到2-x积分,再关于x从0到2积分原积分=6*x*(2-x)+2*(2-x)^2

高数 二重积分的计算题目:∫∫ x√y dxdy 其中D是由两条抛物线 y=√x ,y=x^2所围成的闭区域.D可以用不

描述是这样X型:穿过D内部且平行于y轴的直线与D的边界相交不多于两点Y型:穿过D内部且平行于x轴的直线与D的边界相交不多于两点具体来讲就是先对y积分再对x积就是X型.这时y=y(x)Y型就是反过来x=

二重积分高数题二重积分:∫d∫xydxdy D:y=x y=x/2 y=2 所围成的面积 计算出来 看看

观察图像可确定:原积分变为§(0,2)dy§(y,2y)xydx=§(0,2)ydy[x^2/2|(y,2y)]=§(0,2)[3y^3/2]dy=(3y^4/8)|(0,2)=6

计算积分:∫∫ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1与两坐标所围成的位于第一象限内的闭区

∫(D)∫ln(1+x^2+y^2)dxdyD:x^2+y^2=1与两坐标所围成的位于第一象限内的闭区ρ=1,θ从0,到π/2dS=ρdθdρ∫(D)∫ln(1+x^2+y^2)dxdy=∫[0,1]

算一个高数题目计算∫∫xydxdy,其中D由y=根号x,x+y=2,y=0围成的平面区域我这么化简的∫(下界0上界1)d

你把区域弄错了,y=0是x轴,你看成y轴了先y后x的次序:∫(下界0上界1)dx∫(下界0上界√x)xydy+∫(下界1上界2)dx∫(下界0上界2-x)xydy先x后y的次序:∫(下界0上界1)dy

二重积分(要详解)∫∫Dx*y^(1/2)dσ,其中D是由两条抛物线y=x^(1/2),y=x^2所围成的区域

原式=∫√ydy∫xdx=(1/2)∫√y(y-y^4)dy=(1/2)∫[y^(3/2)-y^(9/2)]dy=(1/2)[(2/5)y^(5/2)-(2/11)y^(11/2)]│=(1/2)(2

二重积分~两题~1∫∫e^-y2(即系e的-y^2次方),D由X=1,Y=1,X=Y所围成2 ∫∫(根号X)dxdy,D

1∫∫e^-y2(即系e的-y^2次方),D由X=1,Y=1,X=Y所围成X=1,Y=1,X=Y不能围成区域,请楼主再检查一下.2∫∫(根号X)dxdy,D={(x,y)x^2+y^2≤x}∫∫(根号

用极坐标计算积分:∫∫ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1与两坐标所围成的位于第一象限内

答:∫(0到π/2)dθ∫(0到1)ln(1+r^2)rdr算不定积分∫rln(1+r^2)dr=∫1/2ln(1+r^2)d(1+r^2)=1/2∫ln(1+r^2)d(1+r^2)∫lnxdx=x

1、∫D∫(sinx/x)dxdy,D是由直线y=x^2围成的区域

第一题的积分区域没写清楚,无法做.第二题先画图,然后知道所求的结果可以写为:2*[∫(1-x*x/4)dx-∫(1-x*x)dx]前面定积分的下限是0,上限是2.后面的定积分的下限是0,上限是1.这样

利用极坐标计算∫∫xydxdy,其中D是第一象限中x+y=1与x+y=2x所围成的闭区域.

x+y=1的极坐标方程为:r=1x+y=2x的极坐标方程为:r=2rcosθ,即r=2cosθ2cosθ=1,则:cosθ=1/2,θ=π/3请自己画图因此两曲线所围区域可分为两部分,第一部分θ:0-

计算二重积分:∫∫x(根号下y)dσ,其中D是由两条抛物线y=根号下x及y=x2所围成的闭区域!求过程!

{y=√x{y=x²==>交点为(0,0),(1,1)∫∫_Dx√ydσ=∫(0→1)x∫(x²→√x)√ydy=∫(0→1)x·(2/3)y^(3/2):(x²→√x)

计算积分∫∫ √y^2-xydxdy,其中D是由直线y=1,y=x,x=0围成的闭区域

看图片,不懂再问.再问:谢谢,我先看看

计算二重积分∫∫xydxdy ,其中积分区域 D是由y=x ,y=1 ,和x=2 所围成的三角 形域.D

X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x