设随机变量X,Y独立同分布且X的分布函数F(x),则Z=max{X,Y}的

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/05 05:34:51
设相互独立的两个随机变量X,Y具有同一分布率,且X的分布率为

解(X,Y)组合情况有以下四种:(0,0),(0,1),(1,0),(1,1)对应概率均是14对于后三种情况,Z=1,对于第一种情况,Z=0故:Z的分布律为Z=0,P=14Z=1,P=34

设两个随机变量X和Y相互独立且同分布:P(X=-1)=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列

A写出联合概率分布函数P{(X,Y)=(1,1)}=P{(X,Y)=(1,-1)}=P{(X,Y)=(-1,1)}=P{(X,Y)=(-1,-1)}=1/4所以P{X=Y}=P{(X,Y)=(1,1)

设随机变量X,Y独立同分布,且P(X=1)=P(X=-1)=1/2,定义Z=XY,证明X,Y,Z两两独立,但不相互独立

两两独立你是证了,但还要一个式子成立主是P(x=xi,y=yi,z=zi)=P(x=xi)P(y=yi)P(z=zi)成立才行但P(X=-1,Y=-1,Z=XY=-1)=0,这是因为X,Y取-1时,Z

2.设随机变量X与Y相互独立且具有同一分布律:

分布律:Z01P1/43/4V01P3/41/4U01P3/41/4如果这就是你想要的回答

设随机变量X,Y相互独立,且都服从两点分布B 则P(X=Y)=

P(X=Y)=P(X=0)P(Y=0)+P(X=1)P(Y=1)=1/9+4/9=5/9如有意见,欢迎讨论,共同学习;如有帮助,再问:为什么这么算啊?再答:根据独立性。书上讲更全面一些,建议您看书。

设随机变量X和Y相互独立,且服从同一分布,证明P(X小于等于Y)=1/2

X,Y互相独立设X的密度函数为f(x),Y的密度函数为f(y)它们的联合密度函数为f(x,y)=f(x)f(y)f(y,x)=f(y)f(x)=f(x,y)f(x,y)关于y=x对称P(X

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

1.设随机变量X Y 相互独立,同分布与N (0,0.5),求E(| X - Y |)

X与Y相互独立,且都服从正态分布N(0,0.5)-->U=X-YEU=EX-EY=0DU=0.5+0.5=1U~N(0,1)E|X-Y|=E|U|为正态分布的一阶绝对中心矩=(2/pi)^(1/

设X,Y为独立且服从相同分布的连续型随机变量,求P{X≤Y}

因为XY服从相同的分布所以它们各自的分布函数和分布密度表达式是相同的,只是变量不同而已(一个是X一个是Y)所以就设分布函数是F(U),分布密度是f(u),对应到XY就是把U换成XY就行了..像LS说的

设随机变量X,Y独立同分布且X分布函数为F(x),则Z=max{X,Y}分布函数为(  )

因为X,Y独立同分布且X分布函数为F(x),故Z=max{X,Y}分布函数为:FZ(x)=P{Z≤x}=P{max{X,Y}≤x}=P{X≤x,Y≤x}=P{X≤x}P{Y≤x}=F(x)F(x)=(

求一道概率论的题…设随机变量X,Y独立同分布,且P(X=1)=P(X=-1)=1/2,定义Z=XY,证明X,Y,Z两两独

已知XY独立同分布,所以P(Z=1)=P(XY=1)=P(X=1,Y=1)+P(X=-1,Y=-1)=P(X=1)P(Y=1)+P(X=-1)P(Y=-1)=1/2*1/2+1/2*1/2=1/2P(

设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然(  )

∵cov(U,V)=E(U-EU)(V-EV)=E(X-Y-E(X-Y))E(X+Y-E(X+Y))=E(X-EX-Y+EY)E(X-EX+Y-EY)=E(X-EX)2-E(Y-EY)2=DX-DY由

设随机变量X,Y独立,且均服从参数为λ的指数分布,求:X/(X+Y)的分布

设u=x+y,v=x/(x+y),算u,v的联合分布之后再求边际分布.

设随机变量X,Y独立同分布,X分布函数是F(x),那么Y分布函数是F(x)还是F(y)

独立同分布,那0么分布函数相同,F(x)=F(y),至于这道题,严格讲B也是正确的,只是表达不同,你说的那道题我看了,A选项应该是[F(z)]^2因为p(maxX,Y)=P(X

设随机变量X与Y独立同分布,且都服从标准正态分布N(0,1),试证:U=X^2+Y^2与V=X/Y相互独立

这是个著名的问题.也很有工程用途: 当一个二维信号联合正态时,幅值和相位是独立的.见图: