设矩阵A,B满足ABA=2BA-8E,求B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:25:12
设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.证:以下记单位矩阵(幺阵)为E.由已知得(A-bE)(B-aE)=abE0两边求行列式,均不为零,故det(A-bE)0,故A-
(1)用分块矩阵的初等变换和秩做II-BA——>II-BA——>I0A00A-ABA0A-ABA所以,左边的秩=r(A-ABA)+n另一方面II-BA——>I-BA——>I-BA0——>I-BA0A0
由|A*|=4=|A|^2,|A|>0所以|A|=2.由AA*=A*A=|A|E=2E在等式ABA^-1=BA^-1+3E两边左乘A*,右乘A,得A*ABA^-1A=A*BA^-1A+3A*A所以2B
n=4,det(A*)=|A|^(n-1)=|A|^3=8,|A|=2(A*)A=A(A*)=|A|E=2E原等式右乘A得AB=B+3AA*左乘上式,(A*)AB=(A*)B+3(A*)A2B=(A*
证明:由A+2B=AB得(A-2E)(B-E)=2E所以B-E可逆,且(B-E)^-1=(1/2)(A-2E).所以(B-E)(A-2E)=2E整理有BA=A+2B再由已知得AB=BA.
由已知ABA^-1=BA^-1+3E等式两边左乘A*,右乘A,得|A|B=A*B+3|A|E因为|A*|=8=|A|^3所以|A|=2所以2B=A*B+6E所以(2E-A*)B=6E所以B=6(2E-
碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor
AB-B=A,(A-E)B-E=A-E,(A-E)(B-E)=E,所以A-E可逆逆矩阵为B-E由1知(A-E)和B-E互逆所以(B-E)(A-E)=E与(A-E)(B-E)=E,展开比较就可以得到AB
不对.题意没有表明A、B本身存在逆矩阵.
由已知ABA^-1=BA^-1+3E等式两边左乘A*,右乘A,得|A|B=A*B+3|A|E因为|A*|=8=|A|^3所以|A|=2所以2B=A*B+6E所以(2E-A*)B=6E所以B=6(2E-
A(BC)=(AB)C=(BA)C=B(AC)=B(CA)=(BC)A
|A|=3.由ABA*=2BA*+E等式两边右乘A得ABA*A=2BA*A+A.因为A*A=|A|E=3E所以3AB=6B+A所以(3A-6E)B=A所以B=(3A-6E)^-1A3A-6E=0303
ABA=2A+BAAB=2E+BAB-B=2E(A-E)B=2EB=2(A-E)^-1
由原式可知,A,B都为方阵.BA=A+2BBA-2B=AB(A-2E)=A当A-2E可逆时,(即A-2E的行列式不为零),B=(A-2E)^(-1)*A
已知等式右乘A,得AB=B+3A,因此(A-E)B=3A,左乘(A-E)^-1,得B=3(A-E)^-1A.由A*可得A=2EA*^-1=20000200-202003/401/4因此(A-E)^-1
易知|A|=-2,A可逆.由A*BA=2BA-8I,左乘A,右乘A^-1,得AA*BAA^-1=2ABAA^-1-8AA^-1所以|A|B=2AB-8I所以(A+I)B=4I所以B=4(A+I)^-1
,A*={1-1-4}是对角矩阵?由|A*|=4=>|A|=2ABA-¹=BA-¹+3E右乘A再左乘A-¹得到:B=3(E-A-¹)-¹=3(E-A*
等式A*BA=4BA-2E两边左乘A,右乘A^-1,得|A|B=4AB-2E.代入|A|=2得B=2AB-E所以(2A-E)B=E因为|E-2A|≠0所以2A-E可逆故B=(2A-E)^-1.
因为|A|=10≠0,所以A可逆.在ABA=6AA+BA等式两边右乘A^-1,得AB=6A+B.即(A-E)B=6A.所以B=6(A-E)^-1A(A-E,A)=100200011021112113r
因为BA=0所以A^TB^T=0所以齐次线性方程组A^TX=0有非零解(B^T的列向量都是其解,而B^T非零)所以|A|=0解得t=3.