设为由曲面及平面所围成的立体 的表面,则曲面积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/21 12:10:31
利用三重积分计算由下列各曲面所围立体的体积.球面x^2+y^2+z^2=2(z>=0),平面z=

再问:谢谢(不过最后一步写错了,5/2还要乘2π/3

求由旋转抛物曲面Z=x^2+y^2与平面z=1所围成的立体的体积

由旋转抛物面的性质,所围体积等于y=x²围绕y轴旋转所得体积,积分区域x(0,1)V=∫πx²dy=2∫πx³dx=π/2

计算由曲面z=x^2+y^2,三个坐标面及平面x+y=1所围立体的体积,答案是1/6,

求由x=0y=0x+y=1围成的三棱柱的体积下底为z=0上底为z=x^2+y^2(圆锥)=∫(0,1)dx∫(0,1-x)dy∫(0,x^2+y^2)dz=∫(0,1)dx∫(0,1-x)[z](0,

计算由曲面z=x*x+y*y及平面z=1所围成的立体体积

z从0到1,立体垂直于z轴的截面为圆,半径r^2=x^2+y^2,面积s=πr^2=π(x^2+y^2)=πz.所以V=s(z)从0到1的积分,所以V=πz^2/2|(0,1)=π/2-0=π/2由旋

利用三重积分计算由曲面所围成的立体的体积

由z=6-x-y,z=√(x+y)得D:0≤x+y≤4空间闭区域Ω可表示为:{(x,y,z)|√(x+y)≤z≤6-x-y,0≤x+y≤4}V=∫(上限2π,下限0)dθ∫(上限2,下限0)rdr∫(

计算由三个坐标面,平面x=2. y=2及曲面z=x的平方+y的平方+2所围立体的体积怎么算?

以下计算的是由坐标面,平面x=0,x=2,y=0,y=2,z=0及曲面z=x²+y²+2所围立体的体积.采用二重积分法:I=(0,2)∫(0,2)∫(x²+y²

用三重积分 求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.

Ω由z=x²+2y²及2x²+y²=6-z围成.消掉z得投影域D:x²+2y²=6-2x²-y²==>x²+y

画出下列各组曲面所围成的立体图形

没有合适的画图工具,大致画了一下草图

求曲面积分zdS,Σ是圆柱面x^2+y^2=1,平面z=0和z=1+x所围立体的表面

圆柱面x^2+y^2=1的投影的面积0,只计算平面z=0和z=1+x即可,而平面z=0代入为0平面z=1+x的投影:x^2+y^2

曲面z=(x^2+y^2) 被柱面^2+y^2=4及xoy平面所围成的立体体积

转化为极坐标求解则z=r^2;dv=2πrdr*z(r)=2πr^3dr;对dv求积分,上限为2,下限为0;

重积分:由曲面z=根号下(x2+y2)及z=x2+y2所围成的立体体积

极坐标求解围成区域z1在上z2在下z1=√(x²+y²),z2=x²+y²令z1=z2√(x²+y²)=x²+y²即r=

设∑是柱面x^2+y^2=9及平面z=0,z=3所围成的区域的整个边界曲面,计算∫∫(x^2+y^2)dS

好好学高数,这是以后学专业课的基础,不要网上问了,有人回答答案也是似是而非的,不会了问学霸同学,或者老师答疑的时候去问问再问:TT身边没有学霸。。课已经讲完了唉再答:x²+y²=9

(二重积分)求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.

图形是一个开口向上的抛物面和一个开口向下的抛物面围成的立体,不用考虑图形具体的样子首先求立体在xy坐标面上的投影区域,把两个曲面的交线投影到xy面上去,就是两个方程联立,消去z,得x^2+y^2=2,

求由曲面z=x^2+2*y^2及z=6-2*x^2-y^2所围成的立体的体积.

曲面z=x^2+2*y^2是一个开头向上的马桶型的图形,z=6-2*x^2-y^2是前面那个图形关于z轴对称后向z轴正方向移动6个单位后得到的图形,是一个与前者图形完全相同但是开口向下的图形且与前者所