设g为n阶欧拉图,证明G是2-边连通图

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/14 05:18:18
设G是n(n>=2)阶欧拉图,证明G是2-边连通图

n欧拉图不一定是2-边连通图吧.举例:5阶完全图,显然为4-边连通图,且每顶点度为4,故也为欧拉图,为题设反例.

证明:设G为△ABC的重心,则GA^2+GB^2+GC^2最小

设△ABC三点坐标分别是(x1,y1)(x2,y2),(x3,y3),G(x,y)则GA^2+GB^2+GC^2=(x-x1)^2+(y-y1)^2+(x-x2)^2+(y-y2)^2+(x-x3)^

设G是一个群,证明:如果G/Z(G)是循环群,则G是交换群

显然中心Z(G)是G的一个正规子群,如果G/Z(G)是循环群,且则G/Z(G)=时:令xH,yH属于,且xH=的s次方,yH=的t次方,则xH=a的s次方*H,yH=a的t次方*H,所以有p属于H和q

简单图G有n个结点,e条边,设e>(n-1)(n-2)/2,证明G是连通的

参考《图论及其应用》一书高等教育出版社张先迪李正良主编上面有你问题的答案很详细

高数,设x趋向于x0时,|g(x)|>=M(M为正的常数),f(x)无穷大,证明f(x)g(x)是无穷大,

因为当x→x0时,|g(x)|≥M,f(x)→∞,所以|f(x)|→+∞,从而|g(x)f(x)|=|g(x)||f(x)|=M|f(x)|→+∞,故g(x)f(x)→∞.再问:|g(x)||f(x)

设m*r矩阵F是列满秩,r*n矩阵G是行满秩,证明秩(FG)=r,

用一下相抵标准型就行了.存在阶数分别为m,r,r,n的可逆矩阵P1,Q1,P2,Q2,使得F=P1[I_r,0]Q1G=P2[I_r;0]Q2那么FG=P1[Q1P2,0;0,0]Q2这个不是最基本的

1.设简单图G是一个Euler图.证明:G中每一个顶点u,均有w(G–u)≤(1/2)d(u).

1、那个w()是什么意思,还望说明一下.2、有.把一个四边形的框的一个顶点和一个三角形的框的一定顶点订在一起,那么形成一个有6个顶点、7条边的Euler简单图.

离散数学定理证明 设F、G、H是任意关系, 证明(F.G).H=F.(G.H)

任意属于(F.G).H存在z使得属于(F.G)并且属于H存在w使得属于F并且属于G且属于H存在w使得属于F且属于(G.H)属于F.(G.H)(这主要用关系合成的概念)

抽象代数证明:设(G,*)是一个群,如果 对所有的a属于G总有a^2=e,则G必是交换群

任取a,b属于G.那么a^2=e,b^2=e,且ab属于G.那么(ab)^2=e故abab=e=a^2b^2故ba=ab故G可交换.

设有限群G恰好具有两个n阶子群H,K,并且G由H,K生成,证明H,K是G的正规子群

我先理解一下你这个题.为了偷懒,我认为H和K是G的仅有的两个不同的n阶子群,除它们以外没有别的n阶子群了(所谓“恰好”).如果不对请告知.这样对于K中的任何元素k,只要证明kHk^(-1)=H即可(因

设H,K分别是群G的阶为3,5的子群,证明H∩G={1}

应该是证明H∩K={1}吧?(1)显然1∈H,且1∈K,即{1}是H∩G的子集;(2)设|H∩K|=m因为H∩K同时为H和K的子群,根据拉格朗日定理,有m|3,且m|5,显然m=1,即|H∩K|=1;

设G是n阶m条的无向连通图,证明m>=n-1

对m用归纳法.再问:如何归纳?再答:当m=1时,图G有两种结构,一种是有两个顶点和一条关联这两个顶点的边构成,显然m=1,n=2.结论成立。另一种是由一条自回路构成,显然m=1,n=1.结论成立。假设

设无向连通图G有n个顶点,证明G至少有(n-1)条边.

设连通图G有(n+1)个顶点,若每个顶点连出至少两条边,那么此时至少有n+1条边(任意图上所有顶点度数和等于边数的两倍),结论已经成立.否则,那么至少有一个顶点只连出一条边.不妨设为A,由于去掉这条边

设G是有n个结点n条边的简单连通图,且G中存在度数为3的结点,证明G中至少有一个度数为1的结点

设D为结点度数因为简单连通图所以Di>=1且sum(Di)=2*n,1,2,...,n因为存在Dx=3所以剩余n-1个结点度数和为sum(Di)-Dx=2*n-3假设不存在度数为1的结点那么Di>=2

设G=(a),F=(b)是两个有限循环群,G的阶是n,F的阶是m,证明:G与F同态,当且仅当m|n.

应该是证明:存在G到F的满同态,当且仅当m|n.G=作为n阶循环群,其中的元素可表示为a^i,0≤i充分性:若m|n,可设n=mk.定义映射φ:G→F,φ(a^i)=b^i,0≤i由F=是m阶循环群,

线性空间设A是n阶矩阵,其特征多项式f(人)=|人E-A|,g(人)是一个多项式,如果(f(人),g(人))=1,证明g

f(x)和g(x)互质表明f(x)和g(x)没有公共根,从而g(A)的特征值都不为0,再利用Cayley-Hamilton定理得到g(A)^{-1}一定是A的多项式.补充:λ是A的特征值当且仅当g(λ

矩阵唯一的证明题:设A是m*n阶矩阵,如果存在G(也是m*n阶矩阵)使得(1)AGA=A;(2)GAG=G;(3)(AG

高超的问题.G称为A的pseudo-inversematrix.不过一般不是转置而是共役转置(conjugatetranspose),A右上加*.引用Kalman1972年给出的证明.记A的转置为A'

设an=g根号1*2+根号2*3+…+根号n*(n+1),证明:1/2*n(n+1)

an=根号1*2+根号2*3+…+根号n*(n+1)>根号1*1+根号2*2+…+根号n*n=1+2+3+...+n=1/2*n*(n+1);所以1/2*n(n+1)

设(G,*)是可交换群,a,b属于G,a和b都是2阶元素,证明(G,*)必有4阶子群

只要证明H={e,a,b,ab=ba}为一个4阶子群显然ab≠a,ab≠b,否则与a和b为2阶元矛盾.因为a^2=b^2=2,所以a^-1=a,b^-1=b所以(ab)^-1=b^-1*a^-1=ba

证明!图论!证明:图G是连通的平面图,其点数为n,边数为e,则n-e+f=2

可以用归纳法证明.假设归纳面数f,f=1,就是一个简单只有一个面的情况,好证明.假设f>=3,想象平面图里最外的一个面F,它有一部分连续的边e1-n1-e2-n2-...-n_(p-1)-e_p(这里