设a是矩阵A的一特征值,f(x)为任一实系数多项式

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/07 16:47:42
设X是矩阵A的特征值,则A的逆的特征值?A的转置的特征值?

设a是A的一个特征向量,又X是A的特征值,则有:Aa=Xa,两边同时乘以A的逆矩阵,则:A^(-1)*Aa=A^(-1)*Xa,即a=A^(-1)*Xa,变换位置得:A^(-1)a=1/X*a,由此可

设n阶矩阵A满足A的平方等于E 证明A的特征值只能是正负一

Aa=ra,r为特征根.a=Ea=A^2a=A(Aa)=Ara=rAa=r(ra)=r^2a=>r^2=1,r=1or-1.

设2是矩阵A的特征值,若|A|=4,证明2也是矩阵A*的特征值

由公式AA*=|A|E可以知道,AA*=4E,2是矩阵A的特征值,设特征向量为a那么Aa=2a所以A*Aa=2A*a代入AA*=4E,得到4a=2A*a即A*a=2a那么显然由特征值的定义可以知道,2

设A是正交矩阵,绝对值A=-1,证明-1是A的特征值.

正交矩阵是实矩阵.①.它的特征值的模都是1.②.它的特征值除±1外,一定是成对出现的共轭虚数(特征方程为实系数).每一对之积为1(模平方).注意|A|=全体特征值的积.而|A|=-1.如果A没有实特征

设detA不等于0,λ是A的特征值,x是相应的特征向量,求伴随矩阵A的特征值和特征向量

由已知,Ax=λx等式两边左乘A*得A*Ax=λA*x所以|A|x=λA*x由于|A|≠0,所以λ≠0所以A*x=(|A|/λ)x所以|A|/λ是A*的特征值,x仍是相应的特征向量

设λ=2是可逆矩阵A的一个特征值,则矩阵(13

设α是A的特征值2的特征向量,则Aα=2α又A可逆∴α=2A-1α,即A−1α=12α∴(13A)−1α=3A−1α=32α∴32是矩阵(13A)−1的一个特征值.

设2是矩阵A的特征值,若1A1=4,证明2也是矩阵A*的特征值

2是矩阵A的特征值,则(1/2)是矩阵A^(-1)的特征值.A*=|A|A^(-1)=4A^(-1),则4*(1/2)是矩阵A*的特征值,即2也是矩阵A*的特征值.

设x=2是可逆矩阵A的一个特征值,则矩阵(1/3A^2)^-1的一个特征值是多少?请具体证明?

2是A的特征值则2^2=4是A^2的特征值所以4/3是(1/3)A^2的特征值所以3/4是(1/3A^2)^-1的一个特征值再问:则2^2=4是A^2的特征值请证明这句话。再答:这不知道啊,这是教材中

设f(x)=x2+3x-1,矩阵A的特征值为1,0,-1.则f(x)的特征值为

f(A)的特征值为f(1)=3,f(0)=-1,f(-1)=-3.

8.设f(x)=x2+3x-1,矩阵A的特征值为1,0,-1.则f(x)的特征值为

由特征值的定理可以知道,若矩阵A的特征值为λ,则矩阵多项式f(A)的特征值为f(λ)在这里f(x)=x²+3x-1于是f(A)=A²+3A-EA的特征值为1,0,-1所以f(A)的

设A,B是N阶方阵,f(x)是B的特征多项式,证明f(A)是可逆矩阵的充分必要条件是A与B没有相同的特征值.

设f(x)=(x-b_1)(x-b_2).(x-b_n)即b_1,b_2,...,b_n是B特征根.则f(A)=(A-b_1E).....(A-b_nE)det(f(A))=det(A-b_1E)..

已经知道3阶矩阵A的特征值是-1,1,2,f(x)=x^2+2x+2.则A^2特征值是什么?A*的特征值是什么?tr A

用矩阵的特征值的定义,以及矩阵的加法,矩阵的数乘性质等推导.|A|等于所有特征值的乘积,trA等于所有特征值的和.多项式f(x)对应的矩阵f(A)的特征值是f(λ),其中λ是A的特征值.A^2的特征值

设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于?

如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^

设2为矩阵A的一个特征值,则矩阵3A必有一个特征值?

2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值

设A,B是n阶实矩阵,A的特征值互逆,证明矩阵AB=BA的充要条件为A的特征值都是B的特征值

只需证明:若λ是AB的特征值,则λ也是BA的特征值.分两种情况:(1)λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λ

设λ是矩阵A的一个特征值,证λ^2是A^2的一个特征值

λ是矩阵A的一个特征值则λp=Ap两遍同时乘以λ则λ^2p=λAp=A(λp)=A(Ap)=A^2p则λ^2是A^2的一个特征值

设A为n阶反称矩阵,证明:如果 入.是矩阵A的特征值,则 -入.也是A的特征值.

由已知,|A-λE|=0又因为A^T=-A所以有|A+λE|=|(A+λE)^T|=|A^T+λE|=|-A+λE|=(-1)^n|A-λE|=0所以-λ也是A的特征值.

设λ是n阶矩阵A的特征值 则 是A平方的特征值

则λ^2是A平方的特征值证明:设x是A的属于特征值λ的特征向量即有Ax=λx,x≠0等式两边左乘A,得A^2x=λAx=λ^2x所以λ^2是A^2的特征值.