设A是三节非零矩阵,且aij Aij=0,则|A|=

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/11 00:52:34
设A,B 分别是m*n,n*m矩阵,证明:AB和BA有相同的非零特征值.

如果a是AB的非零特征值,则存在非零向量x,使得 ABx=ax **.而Bx不等于零,否则若Bx=0有ax=0,与a非零和x非零矛盾.记:Bx=y.由**左乘B,可知BAy=ay.因y为非零向量,所以

【急】设A为n阶矩阵,证明A的行列式=0,且存在非零n阶矩阵B时,AB=0

行列式等于零,Ax=0有非零解,所以存在B.(简单只需取一个解,加上n-1个零解,构成B)

线性代数:设A,B是满足AB=0的任意两个非零矩阵,则必有?

你这样想AB=0如果用矩阵方程的形式来写是什么样的呢应该是A的每一行乘以B的每一列等于0那么B的每一列就是AX=0的解而齐次方程的解系应该都是线性无关的所以B的列向量必然线性无关同理A的行向量也是线性

线性代数设A为n阶矩阵,且A^9=0,则A A=0 B A有一个非零特征值 C A的特征值全为零 D A有n个线性无关的

C正确.再问:为什么啊?再答:设λ是A的特征值则λ^9是A^9=0的特征值.而零矩阵的特征值只能是零所以λ^9=0.所以λ=0.

设a、b、c是任意的非零平面向量,且互相不共线,则

1错误.是向量数量积的常见考点.a·b和c·a均是没有方向的数值,因此题式即为两不共线向量之差为零向量,这是不可能的.由此可知向量的数量积不满足乘法结合律.2正确.考虑三角形三边的关系,两边之差小于第

设A是N阶非零实方阵且满足A的伴随矩阵与A的转置矩阵相等,证明det(A)不等于零.

由已知,A*=A^T所以AA^T=AA*=|A|E由于A≠0,所以存在aij≠0.考虑AA^T中第i行第i列的元素知ai1^2+ai2^2+...+aij^2+...+ain^2=|A|再由aij是实

设A,B为满足AB=0的任意两个非零矩阵,则必有(  )

方法一:设A为m×n矩阵,B 为n×s矩阵,则由AB=O知:r(A)+r(B)≤n,又A,B为非零矩阵,则:必有rank(A)>0,rank(B)>0,可见:rank(A)<n,rank(B

设A是m*n矩阵,B是n*s矩阵,满足AB=0,且A,B均为非零矩阵,那么r(A)+r(B)≤n,r(A)≥1,r(B)

n值为AB所共有那么只能把AB和n作比较如果是A行秩B列秩的话(既引入m又引入s)无法比较

设a,b,c是任意的非零平面向量,且互不共线,则①|a|-|b|

①|a|-|b|(b*c)a-(c*a)b与c垂直=>②:不是真命题

设A是n阶方阵,A≠0.,则存在一个非零矩阵B,使得AB=0的充要条件是│A│=0

必要性:对AB=0两边取行列式,即│AB│=│A││B│=0,因B为非零矩阵,故│B│不等于零,所以,│A│=0充分性:假设AB=C,对AB=C两边取行列式,即│AB│=│A││B│=│C│,因为│A

线性代数问题:设A=[1 2 - 1; 2 -1 a 3 a-2 1 B]是3×4非零矩阵,且AB=0,则必有

A=1.2.-12.-1.a3.a-2.1AB=0r(A)+r(B)《3r(A)〈3r(A)=2A=1.2.-10.-5.a+20.a-8.4-5/(a-8)=(a+2)/4a^2-6a+4=0a怎么

设a,b,c是三个任意的非零向量,且互不平行,以下四个命题正确的是:

第二个是错的,还有可能两向量垂直第三个错的,锐角第一象限角只是其中一个可能,还可能在第四象限角第一个因为不能平行,所以没有等于只能大于所以二三是错的再问:可是答案上写的是只有一个正确啊?再答:那就是第

高等代数题:设A和B都是非零矩阵,且AB=0.则

选C.这是因为:记A的列矩阵是A1,.An;B的行矩阵是B1,.Bn.由于AB=0所以(A1,...An)B=0因为B是非0矩阵,所以矩阵B至少有一列的元素不全为零,所以(A1,...An)乘以这一列

设A,B分别是n,m阶实对称矩阵,且B是正定矩阵.证明,存在m*n非零矩阵H,使B-HAH'成为正定矩阵.

证明B是m阶实对称矩阵,则B特征值均为正式实数,且对任意m维向量x,0b1x'x-(b1/am)×amx'x>0,故B-HAH'成为正定矩阵.

设A,B为2n阶正交矩阵,且|AB|= -1,证明存在非零向量x,使得Ax=Bx

设C=BT*A,其中BT代表B的转置那么C仍是正交阵,且题目表明|C|=-1只要证明存在非零向量x使得(C-I)x=0,就只要证明|C-I|=0即可.而|C-I|=|C-C*CT|=|C|*|I-CT

设A是n维反对称矩阵,证明对任意非零常数c,矩阵A+cE恒可逆

因为反对称矩阵的特征值是0或者纯虚数.如果A+cE不可逆,则-c为反对称矩阵的特征值,出现矛盾,所以矩阵A+cE恒可逆补充证明:由反对称阵定义得A=-A'设ξ是属于特征值λ的特征向量,即Aξ=λξ那么