计算∫L根号yds,其中L是y=x²上点(0,0)与(1,1)之间的一段弧

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/21 15:11:51
计算曲线积分∫L(e^(x^2)sinx+3y-cosy)dx+(xsiny-y^4)dy ,其中L是从点(-π,0)沿

先计算∫L3ydx=∫(从-pi到pi)3sinxdx=6.再计算∫L(e^(x^2)sinx-cosy)dx+(xsiny-y^4)dy=∫LPdx+Qdy,注意此时有aQ/ax=aP/ay,因此积

计算∫L(e^xsiny-3y)dx+(e^xcosy+x)dy,其中L是由点(0,0)到点(0,2)x^2+y^2=2

(e^xsiny-3y)对y求导得:e^xcosy-3(e^xcosy+x)对x求到得:e^xcosy+1考虑L1:(0,2)到(0.0)的直线段,则L和L1构成封闭曲线,逆时针方向,所围区域为D由格

高数!格林公式!用格林公式计算∫L(1+y)sin x dx+(根号下(2+y方)+x-cos x)dy,(L是积分限,

添加线段L1:(0,0)到(2,0),P‘y=sinxQ'x=1+sinx由格林公式:∫L+L1=∫∫dxdy=π/2∫L=π/2-∫L1=π/2-∫(0,2)sinxdx=π/2+cos2-1

计算曲面积分∫根号下(x^2+y^2)ds,其中L:x^2+y^2=-2y,

积分曲线x^2+(y+1)^2=1所以参数方程是x=cost,y=-1+sint.t∈[0,2π]ds=√[(x't)^2+(y't)^2]dt=dt∫√(x^2+y^2)ds=∫√(-2y)ds=∫

计算∫L((x+y)dx+(x-y)dy),其中L是抛物线y=x^2从点(0,0)到(1,1)的一段弧.

设P=x+y,Q=x-y因为满足Q'x=P'y所以原积分与路径无关,可以选择两点之间的线段M,y=x,x从0到1来进行积分.原积分=∫(x+y)dx+(x-y)dy=∫M(x+x)dx+(x-x)dx

计算曲线积分I=∫(-x^2y)dy+xy^2dy,其中L是区域D={(x,y)|x^2+y^2

应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程

计算∫L(1+xe^2y)dx+(x^2e^2y-y^2)dy,其中L是从点O(0,0)经圆周(x-2)^2+y^2=4

因为(1+xe^2y)对y求偏导数得:2xe^2y;(x^2e^2y-y^2)对x求偏导数得:2xe^2y,故积分与路径无关.选取路径:y=0,0《x《4,代入得:∫L(1+xe^2y)dx+(x^2

计算∫L(x^2-2y)dx+(x+y^2siny)dy,其中L是圆周x^2+y^2=2x的正向曲线,

∵L圆周x^2+y^2=2x的半径是1∴L圆周面积∫∫dxdy=π*1^2=π(S表示L圆周x^2+y^2=2x区域)故∫L(x^2-2y)dx+(x+y^2siny)dy=∫∫[α(x+y^2sin

高数格林公式问题.计算I = ∫L [(x+4y)dy+(x-y)dx] / (x^2+4*y^2) 其中L为单位圆 x

取充分小的正数e,在单位圆内做椭圆x^2+4y^2=e^2,方向为逆时针方向,记为S+S包围区域为D,其长轴为e,短轴为e/2,面积为pi*e^2/2.原积分=∫LPdx+Qdy=∫L并S-Pdx+Q

计算∫Lxydx+(y-x)dy,其中L是抛物线y=x2上从点(0,0)到点(1,1)的一段弧

再问:😭再问:老师,把dy化成dx,在dy的式子后面乘以x2的导数是什么意思啊再答:dy=y'dx再问:谢谢老师😂再问:等等,那不是应该除以一个y',才能变成dx吗再答

曲线积分yds,其中L为心形线r=a(1+cost)的下半部分.注意:答案是(-16/5)a^2

请问,学过第一类曲线积分的极坐标形式么?用别的坐标做起来会很麻烦x=r(t)cost.y=r(t)sintds=√[r^2+(r')^2]dt所以∫yds=∫(π到2π)a(1+cost)sint√[

2.计算对弧长∫L(x^2+y)ds的曲线积分 ,其中L是:y=2x,点(0,0)到(1,2).

y=2x,则ds=√(1+2²)dx=√5dx∫(x²+y)ds=∫[0→1](x²+2x)√5dx=√5[(1/3)x³+x²]|[0→1]=4√5

计算曲线积分:∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy.其中L是

计算曲线积分:∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy其中L是在抛物线2x=πy^2上由点(0,0)到(π/2,1)的一段弧.———————————————

计算曲线积分 ∫(x^2-y^2)dx,其中l是曲线y=x^2上从点(0,0)到点(2,4)的一段弧

∫(x^2-y^2)dx=∫0~2(x^2-x^4)dx=-56\15如果是∫(x^2-y^2)dL=∫0~2(x^2-x^4)√(1+4x^2)dx这里的区别就是dx和dl,做题目的时候要看清楚呀.