lim1-cos(ax) x^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/06 02:15:44
sinα,cosα是关于x的方程x^2-ax+a=0的两根

由一元二次方程根与系数关系得sinα+cosα=a,sinαcosα=a由(sinα+cosα)^2=1+2sinαcosα得到a^2=1+2a,求出a值.但正弦函数是有界的,sinα+cosα=√2

lim1/根号n*sin (n趋近于无穷),limx^3+1/4-x^2(x趋近于2),limx^2+1/x-1/x^2

1.根号n无穷,sinn!有界所以第一题为02.连续函数的极限就是函数值,所以第二题为21/43.同第二题,直接代入x=-2就行了,答案为13/4

cos(ax-b/x)*dx/(1+x^2) 区间0到正无穷,应该用复变积分做

见http://hi.baidu.com/522597089/album/item/7e6ee6d0b8a60a763bf3cfde.html#

几道求极限的高数题,lim1/x(tanπx/(2x+1)) x→∞lim x(x^x-1)x→0+lim(x^x^x-

lim1/x(tanπx/(2x+1))=lim(1/x)*tan[π/2-π/(4x+2)]=lim1/xtanπ/(4x+2)=lim(4x+2)/πx=4/π2.lim(xlnx)=0(x→0)

已知sinθ,cosθ是关于x的方程x^2-ax+a=o的两个根 θ

1、韦达定理sinθ+cosθ=asinθcosθ=asin³θ+cos³θ=(sinθ+cosθ)(sin²θ-sinθcosθ+cos²θ)=a(1-a)=

用函数极限的定义证明当 x趋于2时,lim1/(x-1)

我用a代表“得尔塔”.先说选ε:[x-2]

cos(x^2)dx

再答:见图

求解∫cos^2(1-2x)dx,∫(sin ax cos ax) 用第二积分换元法

∫cos^2(1-2x)dx=∫[cos(2-4x)+1]/2dx=[∫cos(2-4x)dx]/2+∫(1/2)dx=-[∫cosudu]/8+x/2+C=(-sinu)/8+x/2+C=[-sin

已知sinθ cosθ是关于x的方程x^2-ax+a=0的两个根

已知sinθcosθ是关于x的方程x^2-ax+a=0的两个根(1)求cos3(π/2-θ)+sin3(π/2-θ)的值(2)求tan(π-θ)-1/tanθ的值(1)解析:∵sinθ,cosθ是关于

二元函数求极限问题lim[﹙2-e^xy﹚^1/2]-1=lim1/2(1-e^xy)(x,y)→(0,0) (x,y)

感觉从左式不能推导出右式,猜测:是不是错误地使用了什么方法,比如洛必达法则?再问:右式是左式推出来的,就是看不懂啊

求这道题的错误原因limx^3(sin1/x-1/2siin2/x)=limx^3sin1/x-lim1/2x^3sin

如果x是趋于无穷的话,结果应该是1/2吧对sinx还需要展开一项,展开到第二项,而且lim求和不是随便都能分开求的要极限值分别都存在才能分开求再问:对sinx还需要展开一项,展开到第二项什么意思??再

当x趋近于0时,求lim1/xln(1+x+x^2+x^3)的极限

不懂请追问再问:1/x怎么体现出来?再答:这个是用洛必达法则,分子、分母同时求导!x求导为1不懂请追问希望能帮到你,望采纳!

该极限为什么错?lim(1/n+1+1/n+2+……+1/n+n)=lim1/n+1+lim1/n+2+……+lim1/

因为你的右边是无穷多项之和而取极限运算和无穷加和不能随意交换即不能先每项取极限再加起来得到零而是需要整体考虑只有有限项加和和求极限可以交换(但可能出现极限之和是不定型的)

设积分域D是以原点为中心,半径为r的圆域,求lim1/πr^2∫∫e^(x^2+y^2)cos(x+y)dxdy

用二重积分的中值定理即可,定理是说∫∫f(x,y)dxdy=f(x0,y0)*S,(x0,y0)为D内某一点,S为积分区域D的面积.本题中∫∫e^(x^2+y^2)cos(x+y)dxdy=[e^(x

cos x>-1/2

画出y=cosx在[-π,π]的图像,由于cos(-2π/3)=cos(2π/3)=-1/2于是在[-π,π]内,由cosx>-1/2得-2π/3

按定义证明 当x趋向于正无穷时,lim1/2^x=0

证明:①对任意ε>0,要使|1/2^x-0|只要|1/2^x-0|=1/2^x1/ε即只要满足:x>|lnε/ln2|≥lnε/ln2即可.②故存在N=[|lnε/ln2|]∈N③当n>N时,n≥N+

设函数f(x)在R上有连续导数,求lim1/4x^2S(f(t+x)-f(t-x))dt

条件f(x)在R上有连续导数有点过了.只要求可导就行.最后一步用了导数的定义.当然在导数连续的条件下可以用两次罗比达法则.