特征值之和等于矩阵行列式的对角线的元素之和

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/17 21:43:07
线性代数 行列式我们知道上(下)三角形矩阵和对角矩阵的行列式等于对角元的乘积,也知道副对角行列式等于(-1)^[n(n-

是的这是斜下三角行列式再问:老师,那是不是可以这么认为:斜上三角行列式,斜下三角行列式和副对角行列式都等于(-1)^[n(n-1)/2]a1a2…an呗?再答:对的

矩阵A的行列式等于0,A的特征值

因为A的所有特征值的乘积等于A的行列式所以|A|=0时,A一定有特征值0.

求四阶矩阵的行列式和特征值,

把每个牲值回代就可得到特征向量.计算量太大.你自己算吧.再问:好难的说再答:计算量大,难度不大就是概念求解

设三阶矩阵A的特征值为1,-1,2.则行列式A等于多少?

行列式是-2,因为矩阵A和它的若尔当标准型的行列式一样.它的若尔当标准型行列式就是1*-1*2=-2

线性代数 矩阵特征值之和等于其主对角线元素之和

不是指一个矩阵化简之后的矩阵;111205243这个矩阵的主对角线上的元素是1、0、3

[考研 线性代数]"特征值的和等于矩阵主对角线上元素之和"怎么证明?

写出行列式|λE-A|根据定义,行列式是不同行不同列的项的乘积之和要得到λ^(n-1)只能取对角线上元素的乘积(λ-a11)(λ-a22)...(λ-ann)所以特征多项式的n-1次项系数是-(a11

矩阵对角线上的和等于特征值之和

对.矩阵对角线上的值之和称为矩阵的“迹”,记作tr(A)可以证明,任何两个相似的矩阵,其"迹"相等.相似矩阵的特征值是一样的,所以A的特征值可以等于某个上三角矩阵的特征值.上三角矩阵的迹就是其特征值之

对角矩阵 特征值就是对角线上的各个元素么?

是!因为IxE-AI=(x-1)(x-2)(x-3).令IxE-AI=0,解得所有特征值是1,2,3.第一个例子也同理.所以对角矩阵的特征值就是主对角线上的各个元素.再问:谢谢老师,那矩阵相似,他们的

1、n阶矩阵的n个特征值相加为什么等于主对角线上的元素之和2、n个特征值相乘为什么等于矩阵所对应的行列式

这是个定理,教材中应该有证明A的特征多项式f(λ)=|A-λE|一方面从行列式的定义分析它的λ^n,λ^(n-1)的系数及常数项另一方面f(λ)=(λ1-λ)...(λn-λ)比较λ^n,λ^(n-1

为什么矩阵的行列式等于他所有特征值的乘积

因为矩阵可以化成对角元素都是其特征值的对角矩阵,而行列式的值不变,对角矩阵的行列式就是对角元素相乘

三阶矩阵A等于(aij),满足A加上2E的行列式等于0,主对角线上的元素之和为2,每一行的和为1,则A的全体特征值().

利用特征值的定义和性质可以如图求出特征值是-2,1,3.经济数学团队帮你解答,请及时采纳.

(线性代数)矩阵特征值之积等于行列式值?

|λE-A|=|λ-a11-a12...-a1n||-a21λ-a22.-a2n||.||-an1-an2.λ-ann|=(λ-λ1)(λ-λ2)...(λ-λn)λ^n-(a11+a22+...+a

分块对角矩阵行列式等于分块行列式相乘,怎么证明?

将每个子方阵通过行(列)变换,化为上(下)三角矩阵,则大矩阵化为上(下)三角矩阵,则大矩阵的行列式等于主对角线上元素的乘积;且每个子矩阵的行列式等于它们的上(下)三角矩阵主对角线上元素的乘积.即分块对

请问对于所有的方阵 矩阵所有特征值的乘积等于矩阵的行列式吗

因为若所有的方阵可以通过相似变换得到若当标准型,例如a11a1a2a31a31a3没标的都为0显然这个矩阵的行列式为所有对角线元素,即特征值的乘积而相似变换不改变行列式,所以矩阵所有特征值的乘积等于矩

一个三角矩阵的行列式是不是等于其对角线上的主元相乘?

是的.不可逆的矩阵是特征值中最少有一个0,这个矩阵有5个特征值.其中有一个为0,没有问题.

矩阵的特征值之和等于主对角线元素之和,特征值的乘积等于主对角线元素乘积,为什么?

貌似你问了两边.这两句话,都依赖于,矩阵有n个特征值(重根按重数计算)相似,迹相同,行列式相同,这个不依赖于矩阵有n个特征值,也不依赖于他们可对角化.

任意矩阵所有特征值的乘积等于对角元素之积吗

只有任意矩阵所有特征值的和等于对角元素之和,没有任意矩阵所有特征值的乘积等于对角元素之积.矩阵所有特征值的乘积等于该矩阵的行列式.

A是行列式等于-1的正交矩阵,则( )一定是A的特征值

-1若矩阵A的特征值为λ,则A的转置的特征值也为λ,而A的逆的特征值为1/λ.矩阵的转置即为矩阵的逆,即:λ=1/λ,所以:λ=1或-1.即正交矩阵的特征值为1或-1又行列式等于-1,所以-1一定是A

怎么证明对称矩阵的所有特征值之和大于等于其最大特征值

对于ATA这样的矩阵才有这个性质,用二次型来证明,不懂再留言吧