求一个正交相似矩阵,将下列矩阵对角化

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/22 05:19:29
求一个正交的相似变换矩阵,将下列对称矩阵化为对角阵 [2,-2,0;-2,1,-2;0 -2,0]

|A-λE|=2-λ-20-21-λ-20-2-λr1+(1/2)(2-λ)r2-r30(1-λ)(2-λ)/2-2(1-λ)-21-λ-20-2-λ第1行提出(1-λ),再按第1列展开=2乘(2-λ

试求一个正交的相似变换矩阵,使下面矩阵对角化 | 2 2 -2| | 2 5 -4| |-2 -4 5|

|A-λE|=2-λ2-225-λ-4-2-45-λ=(10-λ)(1-λ)^2.A的特征值为:λ1=10,λ2=λ3=1.(A-10E)X=0的基础解系为a1=(1,2,-2)'(A-E)X=0的基

求正交矩阵 

这个麻烦请稍候...再答:解:|A-λE|=1-λ242-2-λ2421-λr1-r3-3-λ03+λ2-2-λ2421-λc3+c1-3-λ002-2-λ4425-λ=-(3+λ)[(-2-λ)(5

线性代数基本概念证明 如何证明实对称矩阵必正交相似于对角矩阵?求具体过程,

这个是谱定理,任何线代书上都有证明.用数学归纳法.可以证明存在正交矩阵Q使得QTAQ=Q-1AQ=(k1,00A1)k1为A的一个特征值,且A1为对角矩阵,所以A1从而A可以正交对角化.再问:当时是没

线性代数 求矩阵正交p

A的特征值为1,5,-1(A-E)x=0的基础解系为a1=(1,-1,0)^T(A-5E)x=0的基础解系为a2=(1,1,1)^T(A+E)x=0的基础解系为a3=(1,1,-2)^T单位化后构成正

如果一个矩阵不是实对称矩阵,那么这个矩阵一定不能正交相似对角化么?

不能.设A可正交对角化,P‘AP=D,则A=PDP’,右边的矩阵是对称阵.

矩阵可对角化,那么矩阵可相似于对角阵是不是和正交相似与对角阵一个意思

正交相似与对角阵说明对应不同特征根的特征向量相互垂直.而相似于对角阵不能保证对应不同特征根的特征向量相互垂直.例如,如果A=[1,1;0,2]A(1,0)^T=(1,0)^TA(1,1)^T=2(1,

线性代数求一个正交的相似变化,将对称矩阵A转化为对角矩阵.

|A-λE|=2-λ-20-21-λ-20-2-λr1+(1/2)(2-λ)r2-r3(只能尝试这样,-r3是后来发现正好凑出(1-λ)公因子)0(1-λ)(2-λ)/2-2(1-λ)-21-λ-20

怎么证明一个矩阵是正交矩阵?

A是正交矩阵AA^T=EA^-1=A^TA的列向量组两两正交且长度都是1A的行向量组两两正交且长度都是1再问:五个是等价的么?任意一个成立都可以推出其他4个成立?再答:是的

正交矩阵是不是单位矩阵,求正交矩阵P使A与对角矩阵相似,为什么单位化

正交矩阵不一定是单位矩阵,但单位矩阵是正交矩阵矩阵正交的充分必要条件是其列向量是标准正交向量组,故必须正交化,单位化

一个矩阵的正交补矩阵怎么求啊

qr(A,0)为“经济”方式的QR分解,该调用适用于满矩阵和稀疏矩阵.设A为大小m*n的矩阵,当m

求一个正交的相似变换矩阵,将对称阵化为对角阵!为什么我算出的答案和标答不一样

单特征值对应的特征向量在不计倍数的情况下唯一但是重特征值对应的特征向量不唯一,因为特征子空间的正交基选取方式不唯一只需要验证Q'Q=I和Q'AQ=D即可,不必和答案一致

线代 试求一个正交的相似变换矩阵,并将对称矩阵对角化

这个写起来好麻烦啊,这个是真正的解法,但是我一直举得,求出了前两个,第三个向量,我觉得可以直接用两个向量叉乘一下得出,反正第三个向量和前两个垂直

试求一个正交的相似变换矩阵P,将已知的3阶对称阵A化为对角阵

把λ=1代入方程组(A-λE)X=0中,得到该方程组的系数矩阵为12-212-224-4→000-2-44000所以,这时,方程组与方程x1+2x2-2x3=0(x2,x3为自由未知量)同解,因此,令

线性代数求一个正交的相似变换矩阵 第5题的第二小题

5(2)A=1-2224-42-44|λE-A|[λ-1,2,-2][-2,λ-4,4][-2,4,λ-4]=(λ-1)*(λ^2-8λ)特征值:λ=0,λ=1,λ=8求对应的特征向量,再经正交化、单

求一个正交相似变换矩阵,使已知矩阵变为对角阵

是的需注意的是对角矩阵中主对角线上的元素(特征值)与正交矩阵的列(特征向量)的顺序是对应的

线性代数,试求一个正交相似变换矩阵,将下列对称阵化为对角阵 2 2 -2 2 5

|A-λE|=2-λ2-225-λ-4-2-45-λr3+r22-λ2-225-λ-401-λ1-λc2-c32-λ4-229-λ-4001-λ=(1-λ)[(2-λ)(9-λ)-8](按第3行展开,

已知矩阵相似给出一个矩阵,另一个矩阵如何求

A与B相似,说明它们有相同的特征值,B的特征值为2、4,解出A的特征值用X、Y表示,然后求出X、Y.