dy dx-y=xy^5

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/14 15:04:21
已知xy/x+y=3,求代数式2x-5xy+2y/x-3xy+y

xy/x+y=3则xy=3(x+y)2x-5xy+2y/x-3xy+y=2(x+y)-5xy/(x+y)-3xy=2(x+y)-15(x+y)/(x+y)-9(x+y)=-13(x+y)/-8(x+y

求由方程xy=ex+y所确定的隐函数的导数dydx

方程两边求关x的导数ddx(xy)=(y+xdydx);     ddxex+y=ex+y(1+dydx);所以有  (y+xdy

已知x-y=2xy,求代数式3x-5xy-3y/x+xy-y的值

x-y=2xy3x-5xy-3y/x+xy-y=[3(x-y)-5xy]/[(x-y)+xy]=(6xy-5xy)/(2xy+xy)=1/31/x+1/y=4y+x=4xyx-5xy+y/2x+xy+

已知,xy/x+y=3,求代数式3x-5xy+3y/-x+3xy-y的值

xy/x+y=3xy=3(x+y)3x-5xy+3y/-x+3xy-y=(3x+3y)-5*3(x+y)/[-x-y+3*3(x+y)]=-12(x+y)/8(x+y)=-3/2望采纳,谢谢!

已知xy^2=-2,求-xy(x^2y^5-xy^3-y)的值.

-xy(x^2y^5-xy^3-y)=-(xy^2)^3+(xy^2)^2+xy^2=-(-2)^3+4-2=8+4-2=10

X-Y=5,XY=3.XY是多少?

Y=X-5XY=X²-5X=3X²-5X-3=0X=(5±√37)/2Y=X-5X=(5-√37)/2,Y=(-5-√37)/2X=(5+√37)/2,Y=(-5+√37)/2

设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则dydx|

方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1

xy'=y+xy的

xdy=(y+xy)dxdy/y=((1+x)/x)dxln|y|=ln|x|+x+cy=±e^(ln|x|+x+c)其中c是常数再问:真还不理解我们是选择题:y=cxe^xy=c+x-x^2y=cs

已知X+Y=2XY,求4X-5XY+4Y 除以X+XY+Y 的值

原式=[4(x+y)-2xy]分之[(x+y)+xy]=[4(3xy)-2xy]分之[(3xy)+xy]=10xy分之2xy=5分之1

已知x+y分之xy=2,那么3x-5xy+3y分之3xy-x-y=

xy/(x+y)=2∴xy=2(x+y)(3xy-x-y)/(3x-5xy+3y)=[6(x+y)-x-y]/[3x+3y-10(x+y)]=5(x+y)/[-7(x+y)]=-5/7

已知X+Y分之XY=2,求-X+3XY-Y分之3X+5XY+3Y

因为X+Y分之XY=2,所以XY=2(X+Y)代入后面的分子式得:13(X+Y)/5(X+Y)=13/5

已知xy=2(x+y),求(5x-xy+5y)/(3xy-x-y)的值

(5x-xy+5y)/(3xy-x-y)=[5(x+y)-xy]/[3xy-(x+y)]=[5(x+y)-2(x+y)]/[6(x+y)-(x+y)]=1/2

求微分方程dydx+y=e

这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).

已知xy/x+y=1/2,则代数式3x-5xy+3y/-x+3xy-y=

因为xy/(x+y)=1/2所以x+y=2xy原式=3(x+y)-5xy/(-x-y+3xy)=3*2xy-5xy/(-2xy+3xy)=xy/xy=1

matlab solve函数 xmaxr=solve(dydx,x)

dydx要是等式才行吧.如果是的话,这句话就是求这个等式的根,用r表示x.

X+y=3 xy=-5 Xy=?

X+y=3xy=-5X-y=?(x-y)^2=(X+y)^2-4xy=9+20=29则x-y=±根号29

已知x^-xy=5,xy-y^=-3,求式子3(x^-xy)-xy+y^的值

3(x^2-xy)-xy+y^2=3(x^2-xy)-(xy-y^2)=3*5-(-3)=15+3=18

已知xy^2=-2 求-xy(x^2y^5-xy^3-y)

原式=-xy²(x²y^4-xy²-1)∵xy²=-2原式=2((-2)²-(-2)-1)=10

设函数y=y(x)由方程ex+y+cos(xy)=0确定,则dydx

在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).