曲线围绕x轴旋转一周所得的旋转体的表面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/11 14:56:04
曲线y-1=z绕Y轴旋转一周所得的曲面方程.

这是旋转曲面f(y,z)=0所以旋转曲面是f(+-√(x^2+y^2),z)=0所以曲面是x^2+y^2=(z^2+1)^2

求由曲线y=根号下x,x=2及Ox轴围成的图形分别绕Ox轴、Oy轴旋转一周所得旋转体的体积

绕Ox轴旋转一周所得图形体积为[π*(√x)2]在区间[0,2]上的积分,结果为2π.绕Oy轴旋转一周所得图形体积为[π*(2-y^2)^2]在区间[0,√2]上的积分.结果自已算吧.

求曲线y=x^2与直线y=2x所围平面图形绕x轴旋转一周所得旋转体的体积

求曲线y=x²与直线y=2x所围平面图形绕x轴旋转一周所得旋转体的体积由x²-2x=x(x-2)=0,得x₁=0,x₂=2;即直线与抛物线相交于O(0,0)

Xoy平面上的曲线X^2-4Y^2=9绕Y轴旋转一周所得旋转曲面的方程

设曲线上一点(x0,y0)绕y轴旋转变为(x,y,z),则:x0^2-4y0^2=9.绕y轴旋转,则有:x^2+z^2=x0^2,y=y0,代入曲线方程就得到:x^2+z^2-4y^2=9.此即为所求

求由曲线y=x2及x=y2所围图形的面积,并求其绕y轴旋转一周所得旋转体的体积.

由于曲线y=x2及x=y2的交点为0和1,故所围成的面积在(0,1)上积分,于是有:A=∫ 1 0 (x −x2)dx=[23x32−x33]10=13由于绕y

2:曲线y=4-X^2与x轴围成图形绕X轴旋转一周所得立体体积为多少?

4.原式等于上下同时除 lim[(1-x/2)/(1+2/x)]=lim 由于不能打公式,我写好,照好给你传上去.

将yoz面上的一双曲线y^2/b^2-z^2/c^2=0绕y轴旋转一周,求所得的旋转曲面方程

绕y轴旋转一周,y不变,另一个变量z^2换成x^2+z^2,即y^2/b^2-(x^2+z^2)/c^2=1为双叶双曲面.

曲线x平方+y平方=1(y≥0)绕x轴旋转一周所得的集合体体积为

直接用球体积公式就可以了!4/3pi!再问:怎么会是球呢我没搞懂他是怎么转的能画个图吗?再答:原来的曲线是个上半圆,绕着其直径转一圈啦!

直线y=0与曲线y=x-x*x所围成的平面图形绕y轴旋转一周所得旋转体的体积为____

利用薄壳法y=x-x^的零点为x=+-1开口向下分析可知与x轴相围有意义的部分知识x∈[-1,1]Vy=2π∫上1下0x*(x-x^)dx=2π∫上1下0x^-x^(3)dx=2π*[g(1)-g(0

求曲线{x=1,y=z}绕y轴旋转一周所得的曲面方程.

x^2-y^2+z^2=1设点M(a,b,c)在直线L上,点N为点M绕Z轴旋转所得的点,设N(x,y,z),则有z=c,x^2+y^2=a^2+b^2,于是有:总之消去a,b,c;就可以得到了

xOy平面上的曲线z=0,y=e^x 绕x轴旋转一周所得的旋转曲面的方程

z=0,y=e^x是柱面y=e^x与xoy平面所交得到的曲线绕着x轴旋转一圈得到的是y=e^(±sqrt(x^2+z^2))再问:那绕y轴旋转的到的是啥?谢谢再答:前面那个错了,应该sqrt(y^2+

在oxy面上的曲线x^2/2+y^2/3=1绕x轴旋转一周,所得的曲面为

典型的旋转曲面,曲线是椭圆,叫做旋转椭圆面——这个也叫做扁球面你可愿意设想一个特殊的椭圆——圆,绕其直径旋转一周,所得到的几何体就是一个球体,球体的表面就是一个球面.不难理解,椭圆绕着x轴旋转的半径为

1、ZOX平面内曲线Z=X^2(指x的平方)绕Z轴旋转一周所得的曲面方程是___.

1.z=x^2+y^22.f(x,y)=[(2/x)^2-4(1/y)^2]*xy/83.f'x(x0,y0)=0且f'y(x0,y0)=0一、假设为X+kY+mZ=n,则有-3+2k+7m=n;2+

阴影部分绕x轴旋转一周所得几何体的体积

V=∫(下限0上限1)π(y1)^2dx+∫(下限1上限2)π(y2)^2dx.其中,y1=根号下2px,y2=-(根号2)x+2倍根号2.道理是取很小一段dx,则绕x轴旋转后得一圆盘高dx,底面半径