对任意的正数M,都存在正整数n,使的1加二分之一加三分之一 大于M

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/17 08:06:17
1.是否存在大于1的正整m数使得f(n)=n^3+5n对任意正整数n都能被m整除?

f(n)=n^3+5nf(n+1)=(n+1)^3+5(n+1)=n^3+3n^2+3n+1+5n+5=(n^3+5n)+3n^2+3n+6=f(n)+3(n^2+n+2)=f(n)+3[(n+1)n

是否存在正整数m,使得f(n)=(2n+7)*3^n+9对任意自然数n都能被m整除.若存在,求出最大的m值

还有你拿0来抬杠没意义,0是自然数是某一年改成时自然数的.现在出题的人这么认为的还真不多,除非是在选择填空里面,如果你真觉得应该算上0,那就算16和36的最大公约数就是了也就是4

定义在正整数集上的函数f(x)对任意m,n∈N*,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且f(1)=1

(1)由f(m+n)=f(m)+f(n)+4(m+n)-2则f(n)=f(n-1+1)=f(n-1)+f(1)+4n-2=f(n-1)+4n-1=f(n-2)+4(n-1)-1+4n-1=f(1)+4

证明对任意的正整数n,不等式nlnn>(n-1)ln(n-1)都成立

题目中的n>1,n=1就无意义了考查函数y=f(x)=xlnx(x∈[1,+∞))的单调性y'=1+lnx>0于是y=xlnx(x∈[1,+∞))是增函数下略

高数数列极限问题!定义是:对于任意给出的一个正数ε,都存在一个正整数N,使得n>N时,|An-u|

你对这个定义还没有理解,ε是任意取的,因此当然可以取大于1的数,这个定义的关键是对于随便取的一个ε,都能找到N,因此ε取的越小,条件就越严苛,但是无论ε取多小,依然能找到这样的N满足n>N时,|An-

定义在正整数集上的函数f(x)对任意m,n∈N*,

(1)另m=x,n=1,得到f(x+1)=f(x)+4x+3;所以:f(2)=f(1)+4*1+3f(3)=f(2)+4*2+3f(4)=f(3)+4*3+3.f(x)=f(x-1)+4*(x-1)+

对任意的质数p,求证:存在无穷多个正整数n使得p能整除(2^n-n)

费马小定理在数论中是用欧拉定理证明的,但欧拉定理本身就比较麻烦,不过费马小定理另有个简洁的证明方法.对于素数p和一个任意n(n不能被p整除),令:n=c1modp2n=c2modp3n=c3modp.

求助:证明对任意素数p,存在正整数前n项和Sn及前m项和Sm(n,m为正整数),p=Sn/Sm

S(x)=x(x+1)/2p=n(n+1)/m(m+1)n^2+n=pm(m+1)(2n+1)^2=p(2m+1)^2-p+1设u=2n+1v=2m+1那么u^2-pv^2=1-p显然这个方程存在解u

数列{xn}中,x1=1,x(n+1)=1+xn/(p+xn),是否存在正整数M,使得对于任意的正整数n,都有xM大于x

证明:由,知,(),(Ⅰ)当时,,(1)当时,(2)假设当时,,则当时,,即时,命题成立.根据(1)(2),().………………………………………………………4分(Ⅱ)用数学归纳法证明,().(1)当时

是否存在大于1的正整数m,使得f(n)=(2n+7)·3^n+9对任意正整数n都能被m整除?

一定会恍然大悟的(2k+9)·3^(k+1)+9=(2k+7)*3^(k+1)+2*3^(k+1)+9……这个是分配律,应该没有问题=3*(2k+7)*3^k+2*3^(k+1)+9……3^(k+1)

定义在正整数上的函数f(x)对任意m,n∈N*,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且f(1)=1.

定义在正整数集上的函数f(x)对任意m,n∈N*,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且f(1)=1(1)求函数f(x)的表达式;(2)若m^2-tm-1≤f(x)对于任意的m属于

证明对任意的正整数n,不等式nlnn≥(n-1)ln(n+1)都成立

设f(n)=lnn/(n-1)f'(n)=(n-1-nlnn)/(n(n-1)^2)设g(n)=n-1-nlnng'(n)=-lnn因为n>=1,所以lnn>=0,g'(n)=1,所以f''(n)>=

数列an的前n项和为sn,存在常数A,B,C使得an+sn=An^2+Bn+C对任意正整数n都成立.

1.(1).若an=2n-1,则Sn=n^2,所以2n-1+n^2=An^2+Bn+C,对比系数,A=1,B=2,C=-1;(2)若C=0,a1=1,设an=1+(n-1)d=nd-d+1.所以Sn=

归纳 猜想 论证是否存在大于1的正整数m,使得f(n)=(2n+7)*3^n+1对任意正整数n都能被m整除?若存在,求出

由f(1)=28,f(2)=100除了4不可能有更大的公约数,并且f(n)的奇*奇+1=偶,所以f(n)一定是偶数任何一个数一定可以表示为2k或者2k+1当n=2k,则f(n)被4除时的余数由同余定理

是否存在正整数m,使得f(n)=(2n+7)•3n+9对任意正整数n都能被m整除?若存在,求出最大的m值,并证明你的结论

由f(n)=(2n+7)•3n+9,得f(1)=36,f(2)=3×36,f(3)=10×36,f(4)=34×36,由此猜想m=36.下面用数学归纳法证明:(1)当n=1时,显然成立.(2)假设n=

对任意的质数p,求证:存在无穷多个正整数n使得p能整除(2^n-n)

由费马小定理可以得到p|2^(p-1)-1所以p|2^(p-1)-1-p=2^(p-1)-(p+1)所以设n=k(p^2-1)那么2^n=[2^(p^2-1)]^k=[2^(p-1)]^(k(p+1)

一道有关整除的证明题证明:对于任意正整数p,都存在正整数m,n(m

证明:将正整数p质因数分解为2^a·5^b·q的形式,其中(q,10)=1则(9q,10)=1,∴由欧拉定理得,9q|10^φ(9q)-1.再设t=max(a,b)则9p=2^a·5^b·(9q)|1

数列{an}的前n项和为Sn,存在常数ABC,使得an+Sn=An^2+Bn+C对任意正整数都成立

a(1)+s(1)=2a(1)=A+B+C=-1,a(1)=-1/2.a(n+1)+s(n+1)-[a(n)+s(n)]=a(n+1)-a(n)+a(n+1)=A(2n+1)+B=2An+A+B=-n