如图所示在高15m的光滑平面上有一个质量为2kg的小球被一细绳

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/09 20:10:32
如图所示,一块质量为M、长为l的匀质板放在很长的光滑平面上,板的左端有一质量为m的物块,物块上连接一根很长的细绳,细绳跨

(1)板加速阶段的平均速度v'=v/2板的位移s=v't=vt/2物块的位移s'=vt相对位移l/2=s'-s=vt/2所以板的位移s=l/2根据动能定理:(1/2)Mv^2=摩擦系数*mgs所以摩擦

质量为M的物体,在竖直平面内高h=1m的光滑弧形轨道A点,以v0=4m/s的初速度沿轨道滑下,并进入BC轨道,如图所示.

(1)由A到B段由动能定理得:mgh=12mvB2-12mv02vB=2gh+v20=2×10×1+42=6m/s;(2)由B到C段由动能定理得:12mvB2=μmgs所以:s=v2B2μg=622×

如图所示,ABDO是固定在竖直平面内的光滑轨道,AB是半径为R=15 m的四分之一圆周轨道,半径OA处于水平位置

1)机械能守恒:mgh=1/2mv²解得v=10√(2)=14.142)机械能守恒:mgh=1/2mv²,小球脱离轨道后降地时长:t=√(2R/2/g),其中R=15由几何关系得同

24,如图所示,一固定在竖直平面内的光滑的半圆形轨道ABC,其半径R=0.5m,

(1)恰好通过,即向心力就是重力:mg=mv²/Rv=√5m/s(根号5米每秒)(2)根据运动独立性,2R=½gt²t=√5/5s(五分之根号五秒)CD距离x=vt=1m

如图所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔,质量为m的小球套在圆环上,一根细线的下端系着小球,上端穿过

小球沿圆环缓慢上移可看做匀速运动,对小球进行受力分析,小球受重力G,F,FN,三个力,满足受力平衡.作出受力分析图如下:由图可知△OAB∽△GFA即:GR=FAB=FNR;解得:F=ABRG=2cos

质量M=2kg的物体在光滑的平面上运动,其分速度Vx和Vy随时间变化的图线如图所示

y:加速度=4/8=0.5①初速度只有X方向所以为3②八秒时Vx=3Vy=4勾股定理得到总的速度=5③X方向的位移=3*4=12Y方向的位移=1/2at^2=0.5*2*4^2=16勾股定理总位移=2

如图所示,在半径为R的半球形碗的光滑内表面上,一质量为m的小球以角速度ω在水平平面上做匀速圆周运动,

画个碗的俯视图,在小球运动的水平面上半径为Rsinθ(侧视图)对小球进行受力分解,受支持力和重力,合力为向心力,沿水平面(侧视图)并且指向圆心(俯视图),大小为由mgtanθ由mrw2=向心力得mRs

利用如图所示的装置测量弹簧的弹性势能.在高15m的光滑平台上有一个质量为2kg的小球被一细线拴在墙上,

“当钢板与水平方向成30度角时,球与钢板碰后恰好反向”,说明小球到达地面时速度的方向与钢板垂直,即与地面呈60°角,因此其竖直方向的速度v1和水平方向的速度之比为v1:v2=tan60°=√3由能量守

如图所示,质量M=8kg的小车放在水平光滑的平面上,在小车左端加一水平恒力F,F=8N,当小车向右运动的速度达到1.5m

开始一段时间,物块相对小车滑动,两者间相互作用的滑动摩擦力的大小为Ff=μmg=4N.物块在Ff的作用下加速,加速度为am=Ffm=2m/s2.小车在推力F和f的作用下加速,加速度为aM=F−FfM=

如图所示,物体M置于光滑平面上,另一端在F作用下以恒定 速率V竖直向下运动,

张力对物体做的功即为物体当时动能的大小(无摩擦水平面,初速度为零)由于物体沿绳速度为V,绳与水平方向夹角45度,所以物体速度为√2*V所以绳中张力对物体做的功W=mV^2

如图所示,在高为15m的光滑平台上,有一个质量为2kg的小球被一细线拴在墙上,球与墙间有一被压缩的轻弹簧.当烧断细线后,

小球从初位置到落地时,只有弹簧弹力和重力做功,系统的机械能是守恒,   选取地面为零势能面,根据机械能守恒定律得:E1=E2即:0+mgh+EP弹=0+EKEP弹=12×

圆形光滑轨道位于竖直平面内,其半径为r,质量为m的金属小球环套在轨道上,并能 自由滑动,如图所示,以

、d过最高点时速度为零(这个是极限),能得出答案b;过最高点时速度大于根号下gR,则重力不足以提供向心力,轨道对小环有向内的支持力,即答案d再问:选B的原因是不是这个是小环,所以没有向心力也行再答:是

圆形光滑轨道位于竖直平面内,其半径为r,质量为m的金属小球环套在轨道上,并能 自由滑动,如图所示,

d再问:为什么再答:先回答选项c和d:假设小环在最高点刚好能通过,则重力充当向心力,则有mg=mv^2/r,速度v=根号下gr,若v>根号下gr,则重力比向心力小,小环需增加一个向下的力,所以轨道给小

急救!高一物理题如图所示,质量为m的小球,用长为L的细绳,悬于光滑斜面上的O点,小球在这个倾角为θ的光滑斜面上做圆周运动

最高点,F1+mg*sinθ=mV1^2/L得张力大小 F1=(mV1^2/L)-mg*sinθ最低点,F2-mg*sinθ=mV2^2/L得张力大小 F2=(mV2^2/L)+mg*sinθ注:球受

如图所示,放在水平光滑平面上的物体A和B,质量分别为M和m(M>m),水平恒力F作用在A上时,A、B间的作用力大小为F1

F作用在整体上产生的加速度为:a=FM+m,即:F=(M+m)a.作用在A上时,隔离对B受力分析有:a=F1m,即:F1=ma.作用在B上时,隔离对A受力分析有:a=F2M,即:F2=Ma,因为M>m

如图所示 半径r 0.40m的光滑半圆环轨道安置在一竖直平面上,左侧平滑连接光滑的弧形轨道,将质量

给图再问:再答:第一题h为1m再问:过程,谢谢再答:b点压力为0,受力分析,向心力等于重力再答:

如图所示,在光滑平面上有一静止小车,小车质量为M=5kg,小车上静止地放置着质量为m=1kg的木块,和小车间的动摩擦因数

当M与m间的静摩擦力f≤μmg=2N时,木块与小车一起运动,且加速度相等;当M与m间相对滑动后,M对m的滑动摩擦力不变,则m的加速度不变,所以当M与m间的静摩擦力刚达到最大值时,木块的加速度最大,由牛

如图所示,质量为m的滑块在离地面高H=0.45m的光滑弧形轨道AB上由静止开始下滑求:

(1)A到B由机械能守恒得:mgh=12mvB2∴vB=2gh=2×10×0.45=3m/s(2)B到C由动能定理得:−μmgs=0−12mvB2代入数据得:μ=0.2答:(1)滑块到达轨道底端B时的

如图所示,质量M=8kg的小车放在水平光滑的平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到1.5m/s

(1)对小车和物体受力分析,由牛顿第二定律可得,物块的加速度:am=μg=2m/s2小车的加速度:aM=F−μmgM=0.5 m/s2.(2)由:amt=υ0+aMt得:t=1s所以速度相同