如图所示,圆弧轨道AB是竖直平面内的1 4圆周,半径R为5m,在B点,轨道的切线

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/29 03:17:55
如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB是光滑的,在最低点B与水平轨道BC

(1)、设物块的质量为m,其开始下落处位置距BC的竖直高度为h,到达B点时的速度为v,小车圆弧轨道半径为R.由机械能守恒定律得:mgh=12mv2      &

如图所示,AB是竖直面内的四分之一圆弧形光滑轨道,下端B与水平直轨道相切.一个小物块自A点由静止开始沿轨道下滑,已知轨道

(1)由机械能守恒定律,得:mgR=12mvB2在B点 N−mg=mvB2R由以上两式得 N=3mg=3N.故小物块到达圆弧轨道末端B点时受的支持力为3N.(2)设在水平面上滑动的

如图所示,在竖直平面内有轨道ABCDE,其中BC是半径为R的四分之一圆弧轨道,AB是竖直

注意到Q的速度是水平的,但是可以分解成两个方向:1.按照直杆的伸展方向2.按照直杆的转动方向这两个分速度是正交的同理,P的速度是与水平面呈60°角向下,也可以做类似的分解.而且二者直杆的伸展方向是速度

AB是竖直平面内的四分之一圆弧轨道,在下端B与水平直轨道相切,如图所示.一小球自A点起由静止开始沿轨道下滑.已知圆轨道半

在B处,还属于向心运动,因此F(NB)=F向+G=mv^2/R+mg,而C处小球是匀速直线运动,F(NC)=重力G=mg,又因为根据能量守恒,A点的势能mgR=B处的动能1/2mv^2,从而求出mv^

如图所示,竖直平面内的轨道ABCD由水平轨道AB与光滑的四分之一圆弧轨道CD组成,AB恰与圆弧CD在C点相切

第一问u=2E/3mgL吗?再问:是啊,是这个结果,第一问我算出来了,第二问呢?再答:知道摩擦系数了可以求出物体在水平面上的加速度a=-μg又根据初动能求出物体冲上水平轨道的初速度再根据v‘‘^2=2

如图所示,竖直平面内的轨道ABCD由水平轨道AB与光滑的四分之一圆弧轨道CD组成,AB恰与圆弧CD在C点相切,轨道固定在

图是黑的啊!再答:你在这里看看,有很多题目和你的类似:http://www.jyeoo.com/physics2/search?c=0&q=%E5%A6%82%E5%9B%BE%E6%89%80%E7

如图所示,AB是竖直平面内的事1/4光滑圆弧轨道,下端B与水平直轨相切.一小球自A点起由静止开始沿轨道下滑.已知圆轨道半

这样的题目因为没有摩擦,所以不计能量损失,用守恒的观点看,小球下落是势能转化为动能.势能很好量化,就是下落的高度产生的.动能等于势能减少量,而动能跟速度又是有相关公式的.这么说这个题会做了吗?至于圆弧

如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB是光滑的,在最低点B与水平轨道BC

解析:设物块开始下落的位置距水平轨道BC的竖直高度是h,则最高的到A点高度为h-r,物体从最高点下落到A点的过程中,机械能守恒,则mg(h-r)=1/2mv^2①由物块到达圆弧轨道最低点B时对轨道的压

如图所示,AB是竖直平面内的四分之一光滑圆弧轨道,

(1)小球从A点运动到B点,根据机械能守恒定律,圆弧轨道是光滑的不算其阻力,其势能全部转换成动能,A点相对B点势能为mgR,B点动能就是mgR.(2)、在R/2处,A处的一半势能转移为动能,mgR/2

AB是竖直平面内的四分之一圆弧轨道,在下端B与水平直轨道相切,如图所示.一小球自A点起由静止开始沿轨道下滑.已知圆轨道半

(1)从A→B过程,由动能定理得:mgR=12mvB2-0,解得:vB=2gR;(2)小球在经过圆弧轨道的B点时,由牛顿第二定律得:NB-mg=mv2BR,解得:NB=3mg,从B→C做匀速直线运动,

(2009•天津模拟)如图所示,竖直面内有一绝缘轨道,AB部分是光滑的四分之一圆弧,圆弧半径R=0.5m,B处切线水平,

(1)A到B的过程由动能定理得,−qER+mgR=12mvB2−0解得vB=3m/s.在B处,由牛顿第二定律得,NB−mg=mvB2R解得NB=28N.根据牛顿第三定律,小球对轨道的压力NB′=NB=

如图所示质量为m的小球自由下落高度R后沿竖直平面内的轨道ABC运动.AB是半径为R的1/4粗糙圆弧,BC是直径为R的光滑

看懂题目及所说的图了.分析:设小球在C点时的速度是Vc,由于它对轨道压力恰为0,所以有mg=m*Vc^2/(0.5R)   ---注意BC圆弧的直径是R,那么半径就是0.5R得 Vc=根号(0.5gR

由光滑细管组成的轨道如图所示,其中AB段和BC段是半径为R的四分之一圆弧,轨道固定在竖直平面内.一质量为m的小球,从距离

从D到A机械能守恒,mg(H-2R)=mv^2/2,所以C正确.A点速度v=sqrt(2g(H-2R))落地时间t=sqrt(2*2R/g)=2sqrt(R/g)则离A水平距离=vt=2sqrt(2R

如图所示,AB为1/4圆弧轨道

由动能定理得全程mgR-Wf=0-0Wf全程克服摩擦力做功在水平面上克服摩擦力做功Wf1=μmgR物体在AB段克服摩擦力所做的功wf2Wf=wf1+wf2wf2=mgR-μmgR=mgR(1-μ)物体

【物理】如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径

1、设A到C的垂直高度为h物体对AB斜面的正压力Fn=mgsinθ摩擦力:f=μFn=μmgsinθ由A到第一次经过C点位置过程用动能定理:f*(h+R*cosθ)/sinθ=mgh解得:h=μRco

如图所示,ABCDE为固定在竖直平面内的轨道,ABC为直轨道,AB光滑,BC粗糙,CDE为光滑圆弧轨道,轨道半径为R,直

(1)小物体下滑到C点速度为零.小物体才能第一次滑入圆弧轨道即刚好做简谐运动.从C到D由机械能守恒定律有:mgR(1-cosθ)=12mvD2    ①在D点用