如图所示,光滑水平面上,一小球在穿过O孔的绳子在重物的拉力作用下沿一圆周匀速运动

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/16 14:12:43
如图所示,质量为M的小车放在光滑的水平面上.小车上用细线悬吊一质量为m的小球,M>m.现用一力F1水平向右拉小球,使小球

首先对左边受力分析,对该系统:F1=(M+m)a.对小球,拉力T的竖直分力Tcosα=mg,水平方向:F1-Tsinα=ma,即Tsinα=Ma,tanα=Ma/mg.a=mgtanα/M对右面:F2

如图所示,一光滑的半径为R的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当

(1)根号下gR最高点时,由于轨道压力为零,所以重力提供向心力.mg=mv^2/R解得v=根号下gR(2)2R平抛运动:1/2gt^2=2Rvt=X解得X=2R

如图所示,一光滑的半径为R的圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,小球对

小球对轨道的压力为零,根据牛顿第二定律得,mg=mvB2R,解得vB=gR,根据2R=12gt2,s=vBt,联立两式解得s=2R.落地时的竖直分速度vy=2g•2R=2gR,根据平行四边形定则知,落

如图所示在半径为R的半球形碗的光滑内表面上,一质量为m的小球以角速度ω在水平面上做匀速圆周运动.

一质量为m的小球以角速度ω在水平面上做匀速圆周运动,则它的运动半径为r=√[R²-(R-h)²]=√[2Rh-h²]所以F=mω²r=mω²√[2Rh

带有1/4光滑圆弧轨道,质量为M的滑车静止置于光滑水平面上,如图所示,一质量也为M的小球以速度v0水平冲

因为无论它速度多大,最后离开滑车的时候速度方向一定是沿轨道的切线方向,也就是竖直方向.所以在水平方向上根本就没有初速度,因此会做自由落体运动.

带有1/4光滑圆弧轨道质量为M的滑车静止置于光滑水平面上,如图所示,一质量也为M的小球以速度v0水平冲上滑车,到达某一高

你想岔了,上面的题从力的角度看,小球在上坡时的压力使小车有向右的加速度,小车会一直向右运动;从动量的角度看,小球向右的初速v0,那么小球和小车这个系统就有向右的总动量,小球和小车最终可能有四个状态,A

右端带有1/4光滑圆弧轨道质量为M的小车静置于光滑水平面上,如图所示.一质量为m的小球以速度v0水平冲上小车,关于小球此

整个系统的初动量P=mv0,因为系统置于光滑水平面,符合动量守恒,无论小球最终做什么样的运动,系统水平方向的动量都是P=mv0.设小球离开车速度为v1,车速度为v2.(整个速度都是绝对速度,以地面为参

右端带有光滑圆弧轨道质量为M的小车静置于光滑水平面上,如图所示.一质量为m的小球以速度v0水平冲上小车,小球未从轨道上飞

1、小球上升到最高点时,垂直方向的速度为0,水平方向的速度与小车相同,假设为v1,小球在车上上升的最大高度假设为h.根据动量守恒和能量守恒m*v0=(M+m)*v1(1)1/2*m*v0^2=1/2*

物42.如图所示,在光滑水平面上停放着质量为m、装有光滑弧形槽的小车,一质量也为m的小球以水平初速度

根据动量守恒和能量守恒(1)在水平方向,从最初和最末的状态来看,这个过程动量守恒,能量(而且表现为动能,由于高度一样,所以势能没有变化)也守恒,其结果跟弹性碰撞是一样的.所以发生了速度替换.故:小车速

如图所示,在光滑水平面上放有一小坡形光滑导轨B,现有一质量与导轨相同的光滑小球向右滑上导轨,并越过导轨最高点向右滑下,以

设小球越过导轨后的速度为v1,导轨的速度为v2.根据动量守恒得,mv=mv1+mv2根据机械能守恒得,12mv2=12mv12+12mv22联立两式解得:v1=v,v2=0或v1=0,v2=v(不符合

如图所示,在光滑的水平面上的两个小球A和B

很简单,你等一下.由已知得,B的加速度方向一定与原速度方向相反,只有当A运动到M时满足条件T=(2K+1)πR/V=2V/aa=2v*v/(2k+1)πR(K=0,1,2,3...)π是指3.1415

如图所示,一光滑的半径为R的半圆形轨道固定在水平面上,一个质量为m的小球...

如果是mg/cos30°,这就表示你对力的合成和分解理解的不够.因为按照你这分解,重力是对应的直角边,斜边才是向心力F(但实际上F仅仅是向心力的一部分而已,也就是说你给出的mg/cos30°仅仅是其中

如图所示,一光滑的半圆形碗固定在水平面上,质量为m1的小球用轻绳跨过光滑碗连接质量分别为m2和m3的物体,平衡时小球恰好

对碗内的小球m1受力分析,受重力、两个细线的两个拉力,由于碗边缘光滑,故相当于动滑轮,故细线对物体m2的拉力等于m2g,细线对物体m1的拉力等于m1g,如图根据共点力平衡条件,两个拉力的合力与重力等值

14,如图所示,一光滑的半径为R的圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,

因为到达轨道顶端时,小球对轨道压力为零,意味着仅受重力作用就维持了圆周运动,所以向心加速度就是g于是线速度就是根号下gR因为向心加速度=v的平方除以R离开B点后小球做平抛运动水平运动距离=运动时间x水

如图所示,在光滑水平面上,一质量为m的小球在细绳的拉力作用下做半径为r的匀速圆周运动,小球运动的线速度为υ,则小球做圆周

小球做圆周运动的周期为:T=2πrv;拉力提供向心力,根据牛顿第二定律得,有:F=mv2r.故答案为:2πrv,mυ2

一.如图所示,在光滑水平面上固定一根条形磁铁,有一个小球以一定的初速度向磁铁方向运动.如果发现小球做减速运动,那么小球的

1毛个导电性,磁铁对铜和铝是无吸力的,铜和铝球在靠近n极时切割磁感线,球体本身切割磁力线产生涡流,涡流形成磁场,与磁铁的磁场相互作用,产生相对的作用力,速度越快,力量越明显2w是电所做的功,Q是热功,

如图所示,固定在水平面上的光滑半球,球心O的正上方固定一个小定滑轮C,细绳一端拴一小球,小球置于半球面上的A点,另一端绕

以A球为研究对象,分析受力情况:重力mAg,半球面的支持力N和绳子的拉力T,则半球面的支持力N和绳子的拉力T的合力F=mAg,根据△NFA∽△ACO得:FCO=TAC得:F=TAC•CO,即有:mAg

如图所示,在光滑水平面上压缩弹簧过程中的小球,机械能守恒吗?

小球的机械能不守恒,但是小球和弹簧组成的系统机械能守恒

光滑水平面上放着一质量为M的槽与水平面相切且光滑,如图所示,一质量为m的小球以V0向槽运动,若开始时槽固定不动,求小球上

(1)设高度H则mgH=1/2mv0^2,解得H即可(2)升到最高点达到共同速度v1,由动量守恒定律mv0=(m+M)v1,设能上升h,机械能守恒1/2mv0^2=1/2(m+M)v1^2+mgh,联

如图所示,固定在水平面上的光滑半球,球心O的正上方固定一个小定滑轮,细绳一端拴一小球,小球置于半球面上的A点,另一端绕过

在小球被拉升的过程中对小球进行受力分析,小球受重力、半球面对小球的弹力和绳对小球的拉力,小球在三个力作用下缓慢滑向半球顶点,可视为小球在运动过程中受力平衡,即小球受重力、支持力和绳拉力的合力为0.如图