1 (x^2 y^2)中x,y趋于0的极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/03 15:40:34
1、x(x-y)(x+y)-x(x+y)^2

1)x(x-y)(x+y)-x(x+y)^2=x((x-y)(x+y)-(x+y)^2)=x(x^2-y^2-x^2-2xy-y^2)=x(-2xy-2y^2)=-2xy(x+y)2)(2a+b)(2

[(-x-y)(-x+y)-(x+y)^2-x(y-y^2)}÷1/2y

[(-x-y)(-x+y)-(x+y)^2-x(y-y^2)}÷1/2y=[x²-y²-x²-2xy-y²-xy+xy²]/(y/2)=[(x-2)y

求极限x趋于0 y趋于0时,lim(1-cos(x^2+y^2))/(x^2+y^2)

答案:1/21-cos根号(x^2+y^2)等价于(x^2+y^2)/2所以除以x^2+y^2等于1/2和x,y没关系

证明x,y趋于0时,x^2y/(x^4+y^3)的极限不存在

令y=kx代入即可知,极限与k有关,因此极限不存在

二维随机函数当X趋于无穷小,Y趋于无穷大时,函数趋于1还是0

因为归一性,在x,y取值范围内的积分(或者级数)必为1,因此无穷大的时候分布函数必须趋于0,不然积分(或者级数)不会收敛

求极限((1-根号下x^2y+1)/x^3y^2)sin(xy),当x,y趋于0时

lim((1-√(x^2y+1))/x^3y^2)sin(xy),有理化1-√(x^2y+1)):=lim(-x^2y)/(1+√(x^2y+1))/x^3y^2)sin(xy)=lim(-sin(x

lim sin(xy)/y 当X趋于2,Y趋于0时的极限拜托各位了 3Q

当x趋近2,y趋近0时,xy仍然趋近0,所以sin(xy)和xy是等价无穷小,乘除运算中可以相互代换原式=xy/y=x=2当x趋近2,y趋近0时

[1-cos(x^2+y^2)]/[e^xy*(x^2+y^2)]当x,y都趋于0时的极限

[1-cos(x^2+y^2)]~0.5(x^2+y^2)^2e^xy*(x^2+y^2)~(x^2+y^2)所以答案是0

(1)(x^2/x)-y-x-y

(1)x^2/x)-y-x-y=x-y-x-y=-2y(2)(a/a-b)-(a/a+b)-(2b^2/a^2-b^2)=a(a+b-a+b)/(a^2-b^2)-(2b^2/a^2-b^2)=2b/

求极限((1-根号下x^2+1)/x^3y^2)sin(xy),当x,y趋于0时

题目抄的有点问题.按照x^3y^2在分母来计算.分子1-根号(x^2+1)=-x^2/(1+根号(x^2+1))等价于-x^2/2.sin(xy)等价于xy,代入得原极限=lim-x^2*(xy)/(

求极限:1)x趋于0,y趋于1时,lim(1-xy)/(x^2+y^2)

第一题极限等于1第二题极限为1/2第三题为1第一题方法x->0y->1直接代入即可第二题方法1-cos根号(x^2+y^2)等价于(x^2+y^2)/2所以除以x^2+y^2后等于1/2和x,y没关系

微积分问题7当x趋于无穷时,y= (x^2-1)/ (x^2+3)趋于1. 问X等于多少,使当|x|>X时,|y-1|

我大学数学没学过,用高中的方法来解原式=1-4/(X2+3),因为X2+3递增,所以4/()递减,计算4/(X2+3)根397.

(xy/(x^2+y^2))^x当x,y都趋于正无穷时极限是多少?

极限不存在.上下同时除以x^2,令t=y/x,则原式=t/(1+t^2).由于t可以是任意非负数,所以极限不存在.

求极限x趋于0 y趋于1时,lim(1-cos(x^2+y^2))/(x^2+y^2)

答案:1方法x--->0y---->1直接代入即可

求微分方程xy'+(1-x)y=xe^2,x趋于0时y(x)的极限为1的特解

y'+(1-x)/x*y=e^2∫(1-x)/xdx=∫(1/x-1)dx=lnx-x∫e^2e^(lnx-x)dx=e^2∫xe^(-x)dx=e^2[-xe^(-x)+∫e^(-x)dx]=e^2

求极限lim(xy)^2/(x^2+y^2)^2,(x,y)趋于(0,0)

lim[x=y,x-->0](xy)^2/(x^2+y^2)^2=lim[x=y,x-->0]x^4/(4x^4)=1/4lim[y=2x,x-->0](xy)^2/(x^2+y^2)^2=lim[y

二元函数的极限和连续若y=x^2,x趋于0,f(x,y)=A,则当x趋于0,y趋于0是f(x,y)=A是否一定成立?为什

不一定.根据二元函数极限的定义知,是以任意方式趋于某个点时极限存在,则二元函数的极限存在,若y=x^2,x趋于0,f(x,y)=A,它是以y=x^2的路径趋于(0,0)时,极限为A.但不能说明任意方式

当(x,y)趋于(0,0)时,(x+2y)ln(x^2+y^2)的极限怎么求

如图,最后一步:无穷小量×有界量 还是无穷小量

lim sin(y×x^2+y^4)/(x^2+y^2) x,y都趋于0,

令y=kx则limsin(y×x^2+y^4)/(x^2+y^2)=limsin[kx^3+(kx)^4]/[(1+k^2)*x^2]分子用等价无穷小替换=lim[k+(k^4)*x]*(x^3)/[