如图18所示立方体木块的质量为0.6

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/15 16:43:13
如图6所示,质量为M的楔形木块静止在水平面上,其斜面的倾角

 楔形物块的支持力即图中的FN2=fsinθ+G1+G2(二力平衡)而最关键的f=G1sinθ-F连理这两个式子即可.FN2=(mgsinθ-F)sinθ+g(m+m)不过,这种题我们好长时

如图7所示,质量为m1的足够长木板静止在光滑水平面上.其上放一质量为m2的木块.t等于零时刻起给木块施加一水平恒力f.分

A、木块和木板可能保持相对静止,一起做匀加速直线运动.加速度大小相等.故A正确.B、木块可能相对木板向前滑,即木块的加速度大于木板的加速度,都做匀加速直运动.故B错误,C正确.D错误.故选A.再答:故

如图10所示,在光滑水平地面上放着质量为M、带有倾角为α的斜面木块A,在A的斜面上放着质量为m的小木块B,A、B间动摩擦

F力分解为沿斜面向下的F1和垂直斜面的F2.当最大加速度时,摩擦力是最大静摩擦力,所以有:F1=FsinaF2=Fcosau(mgcosa-F1)cosa=Ma(1)F=(M+m)a(2)(2)代入(

如图2–1–6所示,在光滑的水平面上,一个倔强系数为k的质量不计的弹簧,一端固定在墙上,另一端与质量为mB的木块B相连接

分析A物体,水平方向它只受摩擦力f的作用,f=mA*a关键就是求得A的加速度a了,怎么求?他就等于AB一块的加速度a分析AB整体,受力弹力F=-kx=(mA+mB)a得到a=-kx/(mA+mB)带入

如图1所示,将质量为m1的铜块放置于漂浮在水面上的木块上,恰能使木块全部浸入水中,而铜块仍留在空气中,如果把质量为m2的

其实重点在“则m1对木块的压力G1等于m2对木块的拉力F拉,即G1=F拉·G2-G1=F浮2,由G=mg、F浮=ρ水gV排和ρ水、ρ铜的值即可得出结论:m1:m2=79:89”意思可以理解为m1的重力

如图4所示,用一轻质弹簧将质量为3m的木块A与质量为m的木块B连接,木块B置于水平地面上,现用一个竖直向下的力F压木块A

A在最高点时,B不受地面支持力,弹簧恰好是原长,系统加速度向下为g,平衡位置是在放只A时的位置3mg=kx由振动的对称性知在最低点时3mg+F=k*2x故F=3mg你检查一下.

静止在水平地面上的正立方体木块的边长为a.质量m.

这种题目是木块不会在地面上滑动(因为摩擦力足够大),而是以一条棱为轴的转动.1、在过作为轴的棱的对角线上施加一个垂直该对角线的斜向上的力,这个力就是最小力.只要把这条对角线转动到竖直位置就可以让它自动

如图3-4-10所示,两个质量均为m的木块P、Q在水平恒定F作用下都静止在竖直墙上

如图所示,两个质量均为m的木块P、Q,在水平恒定F作用下都静止在竖直墙上.画出Q物体受力分析的图示,Q受P的弹力大小为(F),受P的静摩擦力大小为(mg);画出P物体受力分析的图示,P受墙的静摩擦力大

如图1所示,边长为10cm的立方体木块 A通过细线与圆柱形容器底部相连,容器中液面与A上表面齐平.从打开容器底

A、图1中物体在细绳的拉力作用下恰好完全浸没,当液体向外排出时,木块受到的浮力会减小,但当木块恰好漂浮时,再向外抽水,在一段时间内,木块受到的浮力不变,当木块与容器底接触后,随水的减少,浮力减小,所以

如图1所示,质量均为M的两个木块A、B在水平力F的作用下,一起沿光滑的水平面运动,A与B的接触面光滑,且与水平面的夹角为

对整体分析,整体的加速度a=F2M,隔离对A分析,A的合力F合=Ma=F2.当F最大时,地面对A的支持力为零,根据牛顿第二定律有:F-Ncos30°=Ma,Nsin30°=Mg,解得F=23Mg.答:

顿第二定律如图3所示,斜面与水平地面成30°角,木块A质量为m,叠放在木块B的上面,木块B的上表面与地面平行,下表面与斜

这两个方程是对木块A的分析得来的A受到三个力:mg向下,N向上,f向左按题意A与B“一起”沿斜面下滑,应该指的是A与B直接无相对滑动.以地面为参照系,A和B的加速度a的方向都是平行斜面,可以分解到水平

体积为1000立方厘米的立方体木块,其下底距水面0.06米,求质量和密度

质量=1*10*10*6=600(克)密度=600/1000=0.6(克/立方厘米)

如图3-12所示,在一粗糙水平面上有两个质量为m1和m2的木块1和2

这道题只看1就行了,木块1匀速,所以受力肯定平衡,它受力摩擦力为um1g,所以弹簧的拉力肯定也是um1g,所以根据这个可以算出弹簧拉长的长度,再加上原长就是答案了