如图,A为光滑曲面的固定轨道,轨道底端的切线方向是水平的,质量M1=0.5Lg

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/21 09:32:04
5.6-物理29/ 44,如图33所示,固定在竖直平面内的光滑的圆弧轨道ABCD,其A点与圆心等高.

若能通过D点,则小球所需向心力必须大于等于小球自身重力,即F>=G.又F=mv^2/r,所以mv^2/r>=mg,即v^2>=gr.经过D点后,小球作平抛运动,当小球落到CAE平面时,竖直方向有:r=

如图的轨道ABCD中,AB,CD为光滑圆弧轨道,BC为长2米的水平轨道

1.由能量守恒,到H高度时,物体动能为0mgh=μmgs+mgH代入数据→H=0.6m2.整个过程只有摩擦力做功,由能量守恒,μmgs'=mgh解得s'=5m来回一次,最后停在水平轨道中间(2m→2m

如图,ABC为光滑的固定轨道,平直段AB处于水平地面上,C端的切线水平.一个滑块从A点以初速度v0水平向右射出,沿着轨道

1.动能与势能相等时,mgh0=0.5mv0^2,h0=v0^2/(2*g)2.出射速度v^2=v0^2-2gh,运动时间0.5gt^2=h,t^2=2h/g,所以运动距离的平方s^2=v^2*t^2

(2014•湖北二模)如图所示,A为一具有光滑曲面的固定轨道,轨道底端是水平的,质量M=40kg小车B静止于轨道右侧,其

(1)物体下滑过程机械能守恒mgh+12mv21=12mv22∴v2=v21+2gh=25m/s物体与小车作用过程动量守恒mv2=(m+M)V∴V=mv2m+M=20×2520+40=235m/s对车

如图,一质量为M的木板B静止在光滑水平面上,其右端上表面紧靠(但不粘连)在固定斜面轨道的底端(斜面底端是一小段光滑的圆弧

物体沿斜面下滑加速度a=g(sin37-μcos37)=4所以下滑到斜面末端速度v1,2aL=v1^2v1=8m/s设后来共同速度为v2,A与B的质量比m:M=k,A与B共同运动时间为t.A减速v2=

如图12,ABCD为一竖直放置的光滑轨道,其中CD是半径为R的半圆形轨道,BC为水平轨道,长度恰为2R,将一小球于A点从

1)由D到B的运动时间设为t,2R=(1/2)gt^2,t=2(R/g)^1/2在D点的速度Vd=2R/t=(Rg)^1/22)轨道D点对球的圧力设为F,F+mg=mV^2/RF=m(Rg)/R-mg

一道疑惑的物理题如图,光滑圆弧轨道与水平轨道平滑相连.在水平轨道上有一轻质弹簧,右端固定在墙M上,左端连接一个质量为2m

我想知道第2问A与B在D点为什么要交换速度,而不是用动量守恒计算?这个问题很好理解的.你分别用能量守恒和动量守恒2个公式写出来就可以推导出来.这个是个定理.实在不行你可以联系生活理解啊.我一说你就明白

机械能守恒定律.如图,光滑弧形轨道与半径为r的光滑轨道相连,固定在同一个竖直平面内,将一只

两种情况:小球最高到达圆轨道的一半高度,或者能够通过最高点第一种情况:mghh=3mgr===>h'>=3r希望是你需要的答案,欢迎继续提问再问:你没有图可以吗?我添加了图片,可是显示不出来啊。你要是

如图,光滑弧形轨道与半径为r的光滑轨道相连,固定在同一个竖直平面内,将一只质量为m的小球由圆弧轨道上离水平面某一高度处由

要想使小球过最高点而不掉下来,在最高点时刚好由重力提供向心力,此时的速度是最小速度.mg=mv^2/r求得v^2=gr小球在轨道运动只有重力做功由动能定理、mg(h-2r)=1/2mv^2解得:h=2

如图所示,A为有光滑曲面的固定轨道,轨道底端的切线方向是水平的.质量M=40kg的小车B静止于轨道右侧,其上表面与轨道底

(1)下滑过程机械能守恒,有:mgh+12mv 21=0+12mv 22代入数据得:v2=6m/s;设初速度方向为正方向,物体相对于小车板面滑动过程动量守恒为:mv2=(m+M)v

如图所示,A为一具有光滑曲面的固定轨道,轨道底端是水平的,质量M=40 kg的小车B静止于轨道右侧,其板面与轨道底端靠近

(1)下滑过程机械能守恒,设滑到底端的速度为v2∵mgh+12mv21=0+12mv22∴v2=v21+2gh=25m/s根据mv2=(m+M)V∴V=mv2m+M=20×2520+40m/s=235

如图,在竖直平面内固定一个半径为R的1/4光滑圆形轨道AB,底端B切线方向连接光滑水平面,C处固定竖直挡板,BC间的水平

物块第一次滑到C点时速度为V=sqr(2gh) (由机械能守恒定律得到)第一次碰撞C板后反弹速度为V/5     第二次反弹后速度为V/25

如图,MNP为竖直面内以固定轨道,某光滑圆弧段MN与水平段NP相切于N ,P端固定一竖直板。M端相对于N的高度差为h,N

解题思路:从物块开始下滑到物块停止的整个过程中,应用动能定理可以求出动摩擦因数.注意这里存在两种可能情况。解题过程:解:这里存在两种可能:第一种情况:物块与P处的竖直挡板相撞后,向左运动一段距离,停在

如图所示,ABCDE为固定在竖直平面内的轨道,ABC为直轨道,AB光滑,BC粗糙,CDE为光滑圆弧轨道,轨道半径为R,直

(1)小物体下滑到C点速度为零.小物体才能第一次滑入圆弧轨道即刚好做简谐运动.从C到D由机械能守恒定律有:mgR(1-cosθ)=12mvD2    ①在D点用

高中物理题目疑惑1、如图,M为固定在桌面上的L形木块,圆半径为R,abcd为3/4圆周的光滑轨道,a为轨道的最高点,de

第一错、必须在A点处的离心力等于重力时才能通过A点而条件给的h=R不可可满足第二错计算过最小满足通过A的速度后最少需要1.414r才能落在DE水平线上所以不是任何位置

光滑的竖直平面上固定着螺旋形光滑轨道,一个小球从A点沿轨道下滑

没图难以回答,估计速度太小是不能提供足够的向心力再问:图不好画,就是像一蜗牛,A与C等高再答:应该是向心力的问题吧,可能小球到达某一高度的时候,它的速度已经不足以提供足够的向心力让小球沿着轨道运动,小

如图为“S”字形玩具轨道,该轨道是用内壁光滑的薄壁细圆管弯成,固定在竖直平面内,轨道弯曲部分由两个半径相等的半圆连接而成

(1)设小物体运动到p点的速度大小为v,对小物体由a点运动到p点过程,运用动能定理得-μmgL-mg•4R=12mv2-12mv20小物体自p点做平抛运动,设运动时间为t,水平射程为s,则: 

如图所示,半径为R的半圆光滑轨道固定在水平地面上.A、B点在同一竖直直线上.

(1)小球从B到C,平抛运动时间t=√2h/g=√4r/g水平速度v0=AV/t=2r/√4r/g=√rg在B点使用向心力公式mg+FN=mv0^2/rFN=mv0^2/r-mg=mrg/r-mg=0

19.(12分)如图13所示,半径为R的光滑半圆环轨道竖直固定在一水平光滑的桌面上,桌距水平地面的高度也为R。在桌面上轻

解题思路:(1)小球a恰好能通过A点,重力提供向心力,根据牛顿第二定律列式求解A点速度,然后根据机械能守恒定律求解a球刚离开弹簧时的速度;(2)b球离开桌面后做平抛运动,根据平抛运动的规律列式求解;(

如图半圆形的光滑轨道槽固定放置.质量为m的小物体从静止开始下滑,则物体在经过槽底时,对槽的压力为( )A&nb

受重力mg,受向心,F=mv2/r.mgh(r)=1/2mv2.F=2mg.所以压力为3mg.再问:看不明白再答:根据动能定理1/2mv2=mgh。所以v2=2gh,就是槽部时的速度。向心力F=mv2