光滑平行金属轨道平面与水平面成角,两轨道上端用一阻值为R的电阻相连

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/15 15:54:21
如图所示,处于匀强磁场中的两根足够长、电阻不计的平行光滑金属导轨相距l=1m,导轨平面与水平面成θ=30°角,下端连接“

(1)设金属棒刚开始下滑时的加速度为a,由于金属棒开始下滑的初速为零,根据牛顿第二定律有  mgsinθ=ma ①代入数据解得  a=gsin30°=

如图所示,ABCD是一段竖直平面内的光滑轨道,AB段与水平面成α角,CD段与水平面成β角,其中BC段水平,且其长度大于L

(1)E总=mgH+2mg(H+Lsinα)=3mgH+2mgLsinα=(1/2)(2m+m)v^2v=((6gH+4gLsinα)/3)^0.5(2)2mgh+mg(h+Lsinβ)=E总h=(3

如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计.匀强磁场与导轨平面垂直.阻值为R的导体棒垂直于导轨静止放置,且与

开关S由1掷到2,电容器放电后会在电路中产生电流.导体棒通有电流后会受到安培力的作用,会产生加速度而加速运动.导体棒切割磁感线,速度增大,感应电动势E=Blv,即增大,则实际电流减小,安培力F=BIL

如图所示,一光滑平行金属轨道平面与水平面成θ角.两轨道上端用一电阻R相

我是今年高考完的学生,这道题我会做,不过结果不一定对.我的答案是:C解释:首先看选项A由楞次定律有导体棒受安培力为阻力.因而,上升时由牛顿第二定律有F安培+mgsinθ=ma1下降时有mgsinθ-F

如图所示,处于匀强磁场中的两根足够长、电阻不计的平行光滑金属导轨相距1m,导轨平面与水平面成θ=37°角,下端连接阻值为

(1)金属棒开始下滑的初速为零,不受安培力作用,由牛顿第二定律得:mgsinθ=ma…①,解得:a=6m/s2…②.(2)金属棒匀速运动时达到稳定状态,设速度为v,金属棒受到的安培力:F=BIL=B2

如图甲所示,足够长的光滑平行金属导轨MN、PQ所在平面与水平面成30°角,两导轨的间距l=0.50m,一端接有阻值R=1

(1)导体棒切割磁感线产生感应电动势:E=Blv,由闭合电路的欧姆定律可得,电路电流:I=E R+r=BlvR +r,由图乙可得:t=4s时,I=0.8A,即:BlvR 

如图所示 平行金属导轨与水平面成 角

F=(BL)^2V/3RR=(BL)^2V/3FI=2BLV/3R电阻R1消耗的热功率为P=I^2R=FV/6B对A错整个装置因摩擦而消耗的热功率为:即摩擦力产生的热功率摩擦力大小f=μmgcosθP

如图所示,一光滑平行金属轨道平面与水平面成θ角,两导轨上端用一电阻R相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上

A、由于导体棒切割磁感线产生感应电流,棒的机械能不断减少,经过同一位置时下滑的速度小于上滑的速度,则下滑阶段的平均速度大于下滑阶段的平均速度,而上滑阶段的位移与下滑阶段的位移大小相等,所以上滑过程的时

(2011•东莞一模)如图所示,两根光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ.整个装置处于沿竖直方向的匀强

A、如果磁场方向竖直向下时,由左手定则可知,金属棒所受安培力水平向左,金属棒所受合力不可能为零,金属棒不可能静止,故A错误;B、磁场方向不可能竖直向下,则磁场竖直向上,由左手定则可知,导体棒所受安培力

平行且足够长的两条光滑金属导轨.相距0.5m,与水平面夹角为30°,不计电阻.广阔的匀强磁场垂直穿过导轨平面,磁感应强度

(1)金属棒ab产生的感应电动势:Eab=BLv=0.4×0.5×1.5V=0.3V(2)刚释放cd棒时,回路中感应电流为I1=E2R=1.5Acd棒受到安培力为:F1=BIL=0.4×1.5×0.5

如图,光滑金属导轨互相平行,间距为L,导轨平面与水平面夹角为θ.放在一个范围较大的竖直向上的磁感强度为B的匀强磁场中.将

金属棒到达最大速度后,机械能转化为电能,重力的功率等于D的功率,所以:PD=PG=mg•vcosθ金属棒ab先做加速度减小的变加速运动,后做匀速直线运动,此时速度达到最大,设最大速度为vm.此时金属棒

一质量为m、电阻为r的金属杆ab,以一定的初速度v0从一光滑平行金属导轨底端向上滑行,导轨平面与水平面成300角,两导轨

的确需要知道v0和v的大小关系,关系判断为:因为系统能量守恒,所以有一部分动能会转化为内能(先转化为电能,之后,电阻生热,转为内能)所以v0>v,但是向上和向下的距离相等所以,用到的时间自然返回时要多

两根间距为d的平行光滑金属导轨间接有电源E,导轨平面与水平面间的夹角θ=30°.金属杆ab垂直导轨放置,导轨与金属杆接触

B未改变前受力分析的BIL=SINθMGB改变后受力分析的SINθMG=COSθBIL及TANθMG=BIL剩下的你应该会了吧减小了角度,又减小了电阻也可以,但因为考虑的因素比较多所以一般不用

(2014•成都模拟)如图甲所示:MN、PQ是相距d=l m的足够长平行光滑金属导轨,导轨平面与水平面成某一夹

(1)S断开时,ab做匀加速直线运动,从图乙得:a=△v△t=30.5m/s=6m/s2,由牛顿第二定律有:mgsinα=ma所以:sinα=ag=610=0.6所以α=37°t=0.5s时,S闭合且

如图所示,处于匀强磁场中的两根光滑的平行金属导轨相距为d,电阻忽略不计.导轨平面与水平面成θ角,下端连接阻值为2r的定值

(1)由题意,金属棒在导轨上保持静止状态,所受的安培力沿导轨向上,则由左手定则可判断磁场方向垂直导轨平面向下.(2)对金属棒受力分析如图所示,由平衡条件有:BId=mgsinθ闭合电路中通过金属棒的电

如图所示,在一对平行光滑的金属导轨的上端连接一阻值为R=3欧的固定电阻,两导轨所决定的平面与水平面成30°角,今将一质量

对导体棒受力分析,受重力,支持力.安培力.E=BLV=4v..I=E/(R+r)=1A.mgsin30-BIL=ma代入数值计算得到加速度a=3m/s2当a=0时,有最大速度.v=mgsin30*(r

如图所示,两足够长的平行光滑的金属导轨MN、PQ相距为 ,导轨平面与水平面的夹角 =30°,导轨电阻不计,磁

给你提示下,第一问中,先对导体棒进行受力分析,导体棒在做加速度逐渐减小的加速运动,当加速度为零时,速度达到最大.相信接下来你就有思路了.这是物理必修3-2的题目.

如图所示 竖直平面内有一光滑绝缘半圆轨道处于方向水平且与轨道平面平行的匀强电(物理题)~

小球受重力、支持力、电场力(方向可能向左也可能向右)AB错.B点,竖直方向上合力提供向心力,有N-mg=mg=mv²/R,得v=√gR,AB错.进一步可得B点动能Ek=mv²/2=

24.如图13所示,在与水平面成θ=37°角的平面内放置两条平行且足够长的金属轨道,轨道宽度l=0.50m,其电阻可忽略

这样的题还是要自己琢磨的,你强调要过程,对你没什么好处,说一下思路吧.1、因为ab是向上匀速运动的,所以拉力与重力在轨道方向的分力、摩擦力、电磁力平衡.重力在轨道方向的分力和摩擦力是固定的,拉力F的范