三阶矩阵a的特征向量可能为E吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/10 10:17:42
设三阶方阵A满足(A+E)3=0,求矩阵A的全部特征值,其中E为三阶单位矩阵.

设k是A的特征值,a是k对应的特征向量(a不等于零向量).则Aa=ka因为(A+E)^3=0即A^3+3A^2+3A+E=0在上式两边同时右乘a得:k^3a+3k^2a+3ka+a=0即(k^3+3k

线性代数的小问题.三阶矩阵A,特征值为-1,1,2,特征向量有3个,问R(A).为什么秩是3呢?

可对角化的矩阵的秩等于其非零特征值的个数再问:лл�������������Ϻ���û�ҵ���ȫһ��ľ��Ӱ���再答:�����ȷ~��ʦ�Ͽν��ģ���Ͳ����˰�~再问:�õ�

(矩阵的特征值与特征向量)已知3阶方阵特征值为2,-1,0.求矩阵B=2A^3-5A^2+3E的特征值与丨B丨

给你一个思路,矩阵论的东西很多都忘记了,所以不能说的太详细,上面的那个式子分解成(2A+E)*(A-2E),然后再做进一步分析

A为三阶矩阵,λ1,λ2,λ3为三个特征值,对应特征向量a1,a2,a3,

你说的完全正确,每个特征向量乘任意非零倍数后仍是特征向量,所以P-1AP不会改变.但调整特征向量顺序后,对角阵中特征值顺序也要做同样调整,例如你的问题应当写为,P-1AP=diag(λ3,λ2,λ1)

A为三阶矩阵,E为三阶单位矩阵A的三个特征值分别为1,2,-3,则下列矩阵中是可逆矩阵的是:A.A-E B.A+E C.

若要A+aE可逆,只需|A+aE|≠0,即a不是-A的特征值,亦即-a不是A的特征值.因此a≠-1,-2,3即可.观察选项,只有A+E可逆,选B.

矩阵A^2=E,且有不同的特征值,不同特征值的特征向量正交,证明A为正交阵

A的特征值只能是1或-1,注意到(A+E)(E-A)=0,线代数上应该证明此时有r(A+E)+r(A-E)=n,也就是Ax=x的解空间和Ax=-x的解空间维数之和是n.在Ax=x中取标准正交向量组q1

三阶矩阵A={3 -2 -4,-2 6 -2,-4 -2 3} 求矩阵的特征值与特征向量

再问:������ϸ˵˵�������ô������� � ���˺þ� ��û����再答:

已知三阶矩阵的特征向量和特征值

不要,那样就麻烦了!由(1)得b=k1a1+k2a2+k3a3两边左乘A得Ab=k1Aa1+k2Aa2+k3Aa3=k1a1+2k2a2+3k3a3同样的道理再两边左乘A得A^2b=k1Aa1+2k2

线性代数中,3阶矩阵A=B-E.其中B为所有元素都是2的3阶矩阵.为什么B的特征向量和A*的特征向量

这样AB矩阵不都已知了吗,把特征值,特征向量算出来不就完了.再问:这个只是题目解答的一部分,解答过程中把B的特征向量求出来之后就直接说A*的特征向量也是一样的。就这里不知道是为什么再答:Aα=入α,A

n阶矩阵A可以对角化的充要条件为A有n个线性无关特征向量,但同一特征值所对应的特征向量就是无穷个,

这可能是概念问题属于同一特征值λ的特征向量是齐次线性方程组(A-λE)x=0的非零解确实有无穷多个但线性无关的解向量组最多含n-r(A-λE)个,即齐次线性方程组的基础解系所含向量个数另,n+1个n维

线性代数题目A为3阶实对称矩阵,属于特征值1的特征向量为(1,-1,1)还有另外两个特征值2,-3.求另外两个特征向量.

方法:实对称矩阵的属于不同特征值的特征向量正交设X=(x1,x2,x3)^T为A的属于特征值2,-3的特征向量.则有x1-x2+x3=0其基础解系为:(1,1,0)^T,(1,0,-1)^T此即为A的

题目如下A为三阶矩阵A=-4 2 10 只有一个线性无关的特征向量则a=?a 3 7 -3 1 7

λ+λ+λ并不是矩阵的迹,是A的全部特征值的和有个定理:A的全部特征值的和等于A的迹再问:您好,这个定理我找到了之前一直忽略了,请问A只有一个线性无关的特征向量为什么它的3个特征值相同?再答:因为属于

n阶矩阵A的秩为n-1,求A的伴随矩阵的特征值与特征向量

(A)=n-1,则r(A*)=1.此时A*A=|A|E=0所以A的非零列向量都是A*的属于特征值0的特征向量再问:我看答案特征值是0和对角线上元素的代数余子式的和,就是A11+A22+……Ann请问这

设α是矩阵A的属于特征值λ的特征向量,P为n阶可逆阵,则α也是矩阵()的特征向量

Aα=λα,两边左乘A,得A^2α=Aλα=λAα=λλα=λ^2α,所以λ^2是A^2的特征根,α是对应的特征向量.答案选C

矩阵A的特征向量的线性组合仍为A的特征向量

应该是属于同一个特征值的特征向量,否则不成立.属于特征值a的特征向量都是(A-aE)X=0解而齐次线性方程组的解的线性组合仍是它的解故属于同一个特征值的特征向量的线性组合仍是属于这个特征值的特征向量.

已知矩阵A的一个特征值为λ,求矩阵E+A的一个特征向量

已知矩阵A的一个特征值为λ,求矩阵E+A的一个特征向量矩阵A有一个特征值为λ,说明|λE-A|=0于是|(λ+1)E-(E+A)|=0即λ+1为E+A的一个特征值.于是解线性方程:(E+A)ξ=(λ+

x是矩阵A的特征向量,则P^-1AP的特征向量为

设x是A的属于特征值λ的特征向量则Ax=λx则(AP)(P^-1x)=λx两边左乘P^-1得(P^-1AP)(P^-1x)=λ(P^-1x)所以λ是P^-1AP的特征值,P^-1x是P^-1AP的属于