高中排列数与排列证明化简:1/2!+2/3!+3/4!+……n-1/n!(n属于N*,n≥2)求证:(n+1)!/k!-
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/01 09:01:48
高中排列数与排列证明
化简:1/2!+2/3!+3/4!+……n-1/n!(n属于N*,n≥2)
求证:(n+1)!/k!- /(k -1)!=[(n-k+1)!x ]/k!(k≤n)
化简:1/2!+2/3!+3/4!+……n-1/n!(n属于N*,n≥2)
求证:(n+1)!/k!- /(k -1)!=[(n-k+1)!x ]/k!(k≤n)
【1】
注意下:(n-1)/(n!)=[n/n!]-[1/n!]=[1/(n-1)!]-[1/(n!)],则:
S=[(1/1!)-(1/2!)]+[(1/2!)-(1/3!)]+[(1/3!)-(1/4!)+…+[1/(n-1)!-1/(n!)]
=(1/1!)-1/(n!)
【2】
[(n+1)!/k!]-[(n!)/(k-1)!]
=[(n+1)×n!]/[k×(k-1)!]-[(n!)/(k-1)!]
={[(n+1)/(k)]-1}×[(n!)/(k-1)!]
=[(n-k+1)/(k)]×[(n!)/(k-1)!]
={(n-k+1)×(n!)}/[k×(k-1)!]
=(n-k+1)×[(n!)/(k!)]
注意下:(n-1)/(n!)=[n/n!]-[1/n!]=[1/(n-1)!]-[1/(n!)],则:
S=[(1/1!)-(1/2!)]+[(1/2!)-(1/3!)]+[(1/3!)-(1/4!)+…+[1/(n-1)!-1/(n!)]
=(1/1!)-1/(n!)
【2】
[(n+1)!/k!]-[(n!)/(k-1)!]
=[(n+1)×n!]/[k×(k-1)!]-[(n!)/(k-1)!]
={[(n+1)/(k)]-1}×[(n!)/(k-1)!]
=[(n-k+1)/(k)]×[(n!)/(k-1)!]
={(n-k+1)×(n!)}/[k×(k-1)!]
=(n-k+1)×[(n!)/(k!)]
计算排列的逆序数:n(n-1)(n-2)(n-3)……21
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
证明(1+2/n)^n>5-2/n(n属于N+,n>=3)
证明n(n+1)(n+2)(n+3)(n+4)是一个完全平方数
求2n元排列2n 1 2n-1 2 2n-2 3 2n-3 .n+1 n的逆序数.
用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=n(n+1)(n+2)(n+3)4(n∈N
用数学归纳法证明(n+1)+(n+2)+…+(n+n)=n(3n+1)2的第二步中,n=k+1时等式左边与n=k时的等式
求证1/(n+1)+1/(n+2)+.+1/(3n+1)>1 [n属于N*]
利用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1),n∈N*”时,从“n=k”变到“n
排列中n(n-1)(n-2)……(n-m+1)
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
证明1/(n+1)+1/(n+2)+1/(n+3)+……+1/(n+n)