来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/01 08:16:30
一个解析几何最值问题 急 急 急 急
A、B 为椭圆x^2/a^2+y^2/b^2=1上两动点(a>b>0),求证中心O与A、B构成△ABO的最大值为ab/2.
不妨设A(a cosα,b sinα)B(a cosβ,b sinβ)
则有
S△ABO=1/2 |a cosα×b sinβ—b sinα×a cosβ|=ab/2|cosα sinβ - sinα cosβ|=ab/2|sin(α-β)|≤ab/2