长为L的均匀带电棒,电荷密度λ,求中垂线上距离1处的电场

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/14 02:02:30
高斯定理的应用问题,一个半径为R的半球壳,均匀带电荷,电荷面密度为A,求球心处电场强度的大小.用一般方法做很麻烦,但是有

用静电平衡简单.用高斯定理也简单.在球心处做一个高斯球面,因为电场球对称,而且面内EdS积分是零,所以各处场强是零.当高斯球面的半径无限小时,场强仍是零,由于场强是连续的,所以,球心处场强为零.再问:

大学物理电学两根相同的均匀带电细棒,长为l,电荷线密度为λ,沿同一条直线放置.两细棒间最近距离也为l,假设棒上的电荷是不

我是假设电荷是同种的、异种的同理简单推一下就行、首先在距离左棒X出左棒产生的电场强度E为1/4πε∫dQ/r²、对于空间中距离左棒右边的点距离为R处电场强度E=1/4πε∫λdx/x&sup

求线电荷密度为λ的均匀带电无限长直细棒周围的场强大小

使用高斯定理,取一圆柱面,使之轴线与直细棒重合,按高斯定理有电通量Ψ=4πkq=q/ε0,Ψ=∮E·dS=E·2πrh,r为圆柱的底面半径,h为圆柱的高.又因为q=λh,所以E=λ/2πrε0=2kλ

一均匀带电半圆环,半径为R,电荷线密度为,求环心处的电势?λ

点电荷q在距离它r处的电势u=kq/r,k=1/(4πε),ε是真空介电常数.半圆环上任一线元dl上的电荷λdl都相当于一个点电荷,它在圆心处的电势dU=k(λdl)/R.半圆上所有线元上的电电荷都产

求场强长为L的直导线AB上均匀的分布着电荷线密度为λ的电荷,求在导线的延长线上与导线一端B相距为d处p点的场强.

若为高中知识有技巧,可利用特殊点或对称性解决,但就本题而言只能用大学数学定积分解决.你可以选L上的一小段微积分变量,从d积到s+L,f(x)=ky/(d+x*x)*(d+x*x)d(x),y为拉姆达.

两根长度均为L的均匀带同号电荷的细棒沿同一条直线放置,两棒的近端距离也为L,两棒的电荷线密度相同,为λ.求两棒之间的静电

坐标原点选在某一棒的一端.用库仑定律求处的E,dE=(kλ/x^2)dx',作积分,积分限是0~L再用dF=Eλdx,作积分,积分限是2L~3L

点电荷的场强问题真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+入 和-入,点P1和P2与两带电线共面

真空中无限长的均匀带电直线的电场强度E=λ/2πεox﹢λ在P1处的场强为λ/2πεod方向沿x轴正方向﹣λ在P1处的场强为λ/2πεod方向沿x轴正方向则叠加后Ep1=λ/2πεod+λ/2πεod

为毛均匀极化的介质,极化电荷体密度为零啊?

体内当然是0.极化可以想象成体内负电子往同一个方向移动相同距离.由于某点电子偏离,会有另一个电子补充,所以该点仍无电荷.只有面才会存在电荷.

关于高斯定理的题用高斯定理求均匀带正电的无限长细棒外的场强分布,设棒上电荷的线密度为λ.

2πrhE=λh/ε.因此高斯面上任意一点的电场强度的大小为E=λ/(2πε.r)

真空中有一电荷线密度为ρ的无限长均匀带电直线,试求直线外任一点的场强

可以采用高斯定理,作一个以直导线为轴心,底面半径为R,高为L的圆柱封闭面,E×2πRL=ρL/ε.所以E=ρ/(2πRε.)

电荷面密度为σ的无限大的均匀带点平面周围空间的电场强度为

由对称可知,电场线是垂直于带电平面的,且是均匀变化的,用高斯定理求,具体怎么求,我也忘记了!

静电场求场强一均匀带点直线段长为L,线电荷密度为a.求直线段的延长线上距L中点为r(r>L/2)处的场强.请写出详细过程

首先,直线段的延长线上距L中点为r(r>L/2)处的场强是由带电直线段产生,但在此直线段上的点在r处的场强由于距离不同,所以处处不同,所以要求的结果要用积分.线电荷密度为a,则此线段上电荷微元为:ad

大学物理-有一“无限大”均匀带电荷密度为 的平面,若设平面所 在处为电势零点,取x轴垂直带电平面

1、首先,x>0时,对E积分所得的电势是负的.2、dl的方向是有l的方向决定的,因为它是l向量的微量.3、当x向量为x正方向时,dx就为正的,x向量为负方向时,dx就为负的.所以,跟x有关.还因为x有

两根相互平行的无限长均匀带正电直线1和2,相距为d,其电荷线密度分别是x,y;则场强等于0与直线1的距离是多少?;

这里可以用高斯定理.首先确定那一条线肯定在这两根线的平面,对两根线做高斯圆柱面,圆柱高h,底面半径是R,x的那条由高斯定理得到E*2πRh=xh/ε则任一点由x产生的场强是Ex=x/(2πRε)同理y

两根无线长的均匀带电的正电直线1,2,相距为d其电荷线密度分别为λ1,λ2,a点为两直线之间的,且场强为零

E1=λ1/(2π*ε0R1),E2=λ2/(2π*ε0R2),E1-E2=λ1/(2π*ε0R1)-λ2/(2π*ε0R2)=0;R1+R2=d,解得:R1=λ1d/(λ1+λ2)