证明e的x次方>1 x的平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/09 07:54:07
e的x次方减去一等价无穷小的证明

在x=0处泰勒展开,e^x=1+x+x^2/2!+x^3/3!.再问:这个等价无穷小,是不是可以直接用。不需要证明。再答:用的时候看情况,如果x为无穷小量,x^2以后的所有项为高阶无穷小量。不用证明

让你证明,你咋知道一用就用拉格朗日中值定理?例如x>1时e的x次方>e*x

e^x>ex(x>1)证明:设f(x)=e^x,则f(x)在区间[1,x]上连续,在区间(1,x)内可导,由拉格朗日中值定理,存在c∈(1,x),使f(x)-f(1)=f'(c)(x-1),即e^x-

证明不等式 e^x>1+(1+x)ln(1+x)(x>0) ( e^x是指e的x次方 )

首先楼主中值定理用错了,f(x)-f(0)=f‘(a)*x,而不是楼主的f(x)-f(0)=f‘(x)*a不过对这题影响不大这题直接求f'(x)=e^x-ln(1+x)-1就行对f'(x)求导得到f'

e的x平方次方乘以x平方的积分

∫x^2*e^(x^2)dx和∫x^2*e^(-x^2)dx,不定积分均无法用初等函数表示,但∫x^2*e^(-x^2)dx在[0,+∞)上的定积分可求出∫(0→+∞)x^2*e^(-x^2)dx=∫

用中值定理证明e的x次方大于1加x(x不等于0)

令f(x)=e^x-x-1f(x)满足拉格朗日中值定理.f(0)=0f(x)-f(0)=f'(ξ)xf'(x)=e^x-1当x>=0时,f'(x)>=0f(x)-f(0)>=0问题得证;当x0f(x)

证明,e的x次方等于x的平方加一.

显然x=0时方程成立,所以x=0是其一实数根令f(x)=e^x-x^2-1f'=e^x-2x令f''=e^x-2=0得:x=ln2x0所以,f(x)单调递增,e的x次方等于x的平方加一有且仅有一根.不

x的平方乘e的-x次方的积分

∫x^2e^(-x)dx=-∫x^2d[e^(-x)]=-x^2e^(-x)+∫e^(-x)dx^2=-x^2e^(-x)+∫2xe^(-x)dx=-x^2e^(-x)-2∫xd[e^(-x)]=-x

(1+X)的1/X次方的极限是e怎么证明

你的逻辑是不对的关于这个极限,首先是通过极限的判定法则证明它存在,因为这个极限是无限不循环小数,所以用字母e代表这个极限然后再用其他办法去精确e的值再问:你的意思是这个E一出来就是被定义为这个特别的式

设函数f(x)=x(e的x次方-1)-ax的平方.

第一问不赘述了,求一次导数分解因式令其等于零,划分区间,就出来结果了.第二问.求一次导结果为:e^x+xe^x-2ax-1.记为g(x),如果要原函数在x非负是值也为非负,因f(0)=0,所以只要其导

证明:当x>0时,不等式e的x次方>1+x成立.

设f(x)=e^x-x-1任取x2>x1>0,则:x2-x1>0,e^x2-e^x1>0f(x2)-f(x1)=e^x2-x2-1-e^x1-x1+1=x2-x1+e^x2-e^x1>0f(x)在(0

证明e的x次方+x-x的平方在(-1,0)内至少有一个实根

e^x:表示e的x次方设:f(x)=e^x+x-x²则:f(-1)=(1/e)-20则f(x)在(-1,0)内至少有一个零点即:e^x+x-x²=0在(-1,0)内至少有一个实根.

e的x次方的导数 如何证明

先求函数f(x)=a^x(a>0,a≠1)的导数f'(x)=lim[f(x+h)-f(x)]/h(h→0)=lim[a^(x+h)-a^x]/h(h→0)=a^xlim(a^h-1)/h(h→0)对l

当x不等于0时,证明:e的x次方大于1+x

f(x)=e^x-1-xf'(x)=e^x-1当x1+x

e 的 x 次方与 e 的 x 次方倒数之和大于等于2 证明

根据均值不等式a+b>=2(ab)^0.5e^x+e^(-x)>=2*(e^x*e^(-x))^0.5=2*1=2

证明不等式:当x大于e时,e的x次方大于x的e次方

证明:设函数f(x)=e^x-x^e则f`(x)=e^x-ex^(e-1)当x=e时f'(e)=e^e-e*e^(e-1)=e^e-e^e=0即f(x)在x=e点有极值又∵f‘’(x)=e^x-e(e

证明不等式e的x次方大于1+x(x不等于0)

学过泰勒展开式吗?e^x=1+x+x^2/2!+x^3/3!+.∴e^x>1+x

求函数f(x)=(e的x次方-a)的平方+(e的-x次方-a)的平方(0

对于这个问题应该先化简f(x)=(e的x次方-+e的-x次方-a)平方+a平方-2然后根据均值不等式就可以得出上面的结论一般情况下对于这类问题不能对(e的x次方-a)的平方和(e的-x次方-a)的平方