设y= 1 sinx ,则dy=

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/02 21:12:46
设y=f(sinx),f(u)可微,则dy=_____.

y=f(sinx),f(u)可微,则dy=d(f(sinx))=f'(sinx)cosx

设y-x-1/2sinx,则dx/dy=

是y=x-1/2sinx吧那么y'=1-(1/2)cosx又y'=dy/dx=1-(1/2)cosx所以dx/dy=1/[1-(1/2)cosx]=2/(2-cosx)

设y=㏑(sinx/cosx)求dy

即y=lntanx所以dy=dlntanx=1/tanxdtanx=1/tanx*sec²xdx=2dx/sin2x再问:您的答案靠谱吗因为我这是考试题。

设y=x^sinx,求dy/dx

这函数好像叫幂指函数.不能直接用幂函数的求导法则.再问:为什么要取对数在开导啊不能直接开导吗再答:-幂函数,指数函数可以像你那样按照基础求导法则求。【幂指函数】不能简单的用基础求导法则。-对两边取对数

设y=f(sinx)+e^x^2,f'(x)存在,求y'及dy

再问:��Ҫ��cosxô再答:��Ȼ�Ǹ��Ϻ�����˳��������������

设y=sinx+cosx,则dy=多少

y=sinx+cosx,dy是对x的求导y导数=(sinx+cosx)导数=cosx-sinxdy=(cosx-sinx)dx前面是dy后面则要有对应的dx你看下,明白没?没得话,这里说实在的最主要的

设y =e^-sinx^2,则dy比dx等于多少

dy比dx是对y求导即dy/dx=(-sinx^2)′*e^-sinx^2=2x*(-cosx^2)*e^-sinx^2

设y=(2+sinx)^X,求dy

y=e^(lny)=e^(xln(2+sinx))dy=de^(xln(2+sinx))=e^(xln(2+sinx))d(xln(2+sinx))=(2+sinx)^x(ln(2+sinx)+xco

设y=(1+sinx)^x,则dy|x=π

y=(1+sinx)^xlny=ln(1+sinx)^x=xln(1+sinx)y'/y=ln(1+sinx)+xcosx/(1+sinx)y'=[ln(1+sinx)+xcosx/(1+sinx)]

设y=e的x平方sinx则dy=多少

y=e^x*sinxdy/dx=e^xcosx+e^xsinxsody=e^x(sinx+cosx)dx

y=ln(sinx)求y",dy

y=ln(sinx)y'=cosx/sinx=cotxy''=-1/sin²x∴y''=-1/sin²xdy=cotxdx

设y=e^sinx+3^x 求dy 急!

dy=[cosx*e^sinx+3^x*ln3]dx

设y=e^sinx +3^x,求dy

dy=(e^sinx*cosx+3^xln3)dx

设Y=X分之Sinx求DY

dy=d(sinx/x)=[xdsinx-sinxdx]/x²=[xcosxdx-sinxdx]/x²=(xcosx-sinx)/x²dx

设y=tanx 则dy=

求导即可因为(tanx)'=sec^2x所以dy=sec^2xdx

设y=(x*sinx+cosx)/(x*cosx-sinx),求dy/dx

y=﹙xsinx+cosx﹚/﹙xcosx-sinx﹚dy/dx=【﹙xsinx+cosx﹚'×﹙xcosx-sinx﹚-﹙xsinx+cosx﹚×﹙xcosx-sinx﹚'】/﹙xcosx-sinx

设y=f(sinx),则dy=?

因为(sinx)'=cosx所以对于复合函数的导数是:dy=f’(sinx)*(sinx)'dx=cosxf'(sinx)dx

设y=x^2*e^sinx,求dy.

解y'=dy/dx=(x²e^sinx)'=2xe^sinx+x²e^sinx(sinx)'=2xe^sinx+cosx*x²e^sinx∴dy=(2xe^sinx+x&

设y=e^sinx,则dy=

链式法则dy=(e^sinx)*cosxdx