设G是n阶简单图,证明最大度数小于等于n-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/25 14:43:37
设G是n(n>=2)阶欧拉图,证明G是2-边连通图

n欧拉图不一定是2-边连通图吧.举例:5阶完全图,显然为4-边连通图,且每顶点度为4,故也为欧拉图,为题设反例.

简单的线代证明题设A是n阶方阵,a1,a2分别是属于A的两个不同的特征值x1,x2的特征向量,证明a1+a2不是A的特征

假设a1+a2是A的特征向量则A(a1+a2)=λ(a1+a2)=λa1+λa2又a1,a2分别是属于A的两个不同的特征值x1,x2的特征向量Aa1=x1*a1,Aa2=x2*a2A(a1+a2)=x

1.证明在具有n个顶点的简单无向图G中,至少有两个顶点的度数相同.

n个顶点度数为d(xi)(1≤i≤n)则d(xi)可以取0,1,2...,n-1可以取n个不同的值若存在d(xi)=0则不可能存在d(xi)=nn个d(xi)取n-1个不同的值由鸽笼原理必有d(xm)

简单图G有n个结点,e条边,设e>(n-1)(n-2)/2,证明G是连通的

参考《图论及其应用》一书高等教育出版社张先迪李正良主编上面有你问题的答案很详细

1.设简单图G是一个Euler图.证明:G中每一个顶点u,均有w(G–u)≤(1/2)d(u).

1、那个w()是什么意思,还望说明一下.2、有.把一个四边形的框的一个顶点和一个三角形的框的一定顶点订在一起,那么形成一个有6个顶点、7条边的Euler简单图.

设有限群G恰好具有两个n阶子群H,K,并且G由H,K生成,证明H,K是G的正规子群

我先理解一下你这个题.为了偷懒,我认为H和K是G的仅有的两个不同的n阶子群,除它们以外没有别的n阶子群了(所谓“恰好”).如果不对请告知.这样对于K中的任何元素k,只要证明kHk^(-1)=H即可(因

证明 简单图的最大度数小于节点数(离散数学)

这个很简单~设简单图G的最大度数为n,设顶点u的度数=n,只要证G中至少含有n+1个顶点.u有n条边,每条边都有一个异于u的顶点,所以除u外,G中至少还有n个点.则G中至少有n+1个顶点,证毕!

设G是n阶m条的无向连通图,证明m>=n-1

对m用归纳法.再问:如何归纳?再答:当m=1时,图G有两种结构,一种是有两个顶点和一条关联这两个顶点的边构成,显然m=1,n=2.结论成立。另一种是由一条自回路构成,显然m=1,n=1.结论成立。假设

设无向连通图G有n个顶点,证明G至少有(n-1)条边.

设连通图G有(n+1)个顶点,若每个顶点连出至少两条边,那么此时至少有n+1条边(任意图上所有顶点度数和等于边数的两倍),结论已经成立.否则,那么至少有一个顶点只连出一条边.不妨设为A,由于去掉这条边

设G是有n个结点n条边的简单连通图,且G中存在度数为3的结点,证明G中至少有一个度数为1的结点

设D为结点度数因为简单连通图所以Di>=1且sum(Di)=2*n,1,2,...,n因为存在Dx=3所以剩余n-1个结点度数和为sum(Di)-Dx=2*n-3假设不存在度数为1的结点那么Di>=2

设一个无向图G=(V,E)有n个顶点n+1条边,证明G中至少有一个顶点的度数大于或等于3.

反证法.假设所有顶点的度数最多为2,则度数总和D≤2n≠2(n+1),与握手定理矛盾.

图对于图G= ,其中 |V| =n,|E|=n+1 ,证明G中至少有一个结点的度数≥3

证明反证法,如果G中所有结点的度数均小于3,或不超过2,则n个结点度数之和不超过2n,结点度数之和等于边数的2倍,即结点度数之和=2|E|=2n+2,故有2n≥2n+2,n≥n+1,矛盾.

设G=(a),F=(b)是两个有限循环群,G的阶是n,F的阶是m,证明:G与F同态,当且仅当m|n.

应该是证明:存在G到F的满同态,当且仅当m|n.G=作为n阶循环群,其中的元素可表示为a^i,0≤i充分性:若m|n,可设n=mk.定义映射φ:G→F,φ(a^i)=b^i,0≤i由F=是m阶循环群,

线性空间设A是n阶矩阵,其特征多项式f(人)=|人E-A|,g(人)是一个多项式,如果(f(人),g(人))=1,证明g

f(x)和g(x)互质表明f(x)和g(x)没有公共根,从而g(A)的特征值都不为0,再利用Cayley-Hamilton定理得到g(A)^{-1}一定是A的多项式.补充:λ是A的特征值当且仅当g(λ

线性代数简单题设n阶方阵A是正交阵,证明A的伴随阵A*也是正交阵

A正交说明|A|=1或者-1A*=|A|A逆=±A'('表示转置所以A*乘(A*)'=±A'乘(±A')'=A'A=E所以A*亦正交

【线性代数】A是复n阶方阵、设其绝对值最大特征值为λ、证明……

一定程度的分离性总是需要的(比较弱的分离性条件是模最大的特征值唯一),不然不可能保证对大多数初始向量都收敛,简单的例子是旋转变换.再弱一点分离性条件是模最大的特征值在不计重数的意义下唯一,这个时候λ^

离散证明:一个图包含2n个结点,每个结点的度数大于等于n的简单图是连通的

假设不连通.有如下两种情况:1.最小连通分量有n个结点:此时共两个连通分量,每个分量n个结点.对于任一点,它的度至多是n-1,矛盾.2.最小连通分量小于n个结点:该分量中任一点的度不超过n,矛盾.

矩阵唯一的证明题:设A是m*n阶矩阵,如果存在G(也是m*n阶矩阵)使得(1)AGA=A;(2)GAG=G;(3)(AG

高超的问题.G称为A的pseudo-inversematrix.不过一般不是转置而是共役转置(conjugatetranspose),A右上加*.引用Kalman1972年给出的证明.记A的转置为A'

哈密尔顿图证明题设G是简单图,删去G中任一边e,则G-e是一棵生成树.证明是哈密尔顿图

根据题意可得g为一个有回路的简单图,然后假设有点不再回路上,去掉与这个点相连的边,与G-e是一棵生成树是一颗生成树矛盾,所以所有点必在这个回路上,所以必为哈密尔顿图