氢原子的电子在s轨道做什么运动

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/10 08:21:01
量子力学假设氢原子处于激发态时,电子做圆轨道运动,氢原子激发态的平均寿命约为10(-8)s .求氢原子中量子数n=4状态

氢原子中量子数n=4状态的绕核旋转半径为r=4^2r0=16*5.29*10^-11me^2/(4πε0r^2)=mv^2/rv=√(e^2/(4πε0rm))n=vt/(2πr)=5.46*10^5

在氢原子中,可以认为核外电子绕原子做匀速圆周运动,轨道半径为(5.3*10的负7次方)米.求电子沿轨道运动的动能?

按牛顿力学模型就是库伦力提供向心力呗k*e^2/r^2=m*v^2/rm*v^2=k*e^2/rE=1/2*m*v^2=1/2*k*e^2/rk为静电力常数,E为动能,r为轨道半径

氢原子核外电子在第一轨道上运动时,能量E=-13.6eV,轨道半径r1=0.53×10-10m.这时电子运动的动能是多少

动能是13.6eV,电势能是-27.2eV.动能为正,电势能为负,电势能绝对值总是动能的两倍.无穷远处的电势能为0,所以距离原子核r处电势能为-k*e*e/r而电场力充当向心力,k*e*e/r^2=m

原子中的电子绕原子核运动相当于一个环形电流,设氢原子中的电子以速率v在半径为r的圆形轨道上绕核运动,电

这个问题其实很简单,轨道周长2派r,电子绕核一周需要的时间为2派r/v.也就是每秒绕核v/2派r周.在轨道上任取一个截面,每秒通过这个界面的电子数就是v/2派r,则电流大小I=ev/2派r,方向与运动

“氢原子中的电子式在做确定的轨道运动,轨道式量子化的”错在哪里?

作为实物微观粒子的电子,具有波粒二象性,不确定原理说明它没有固定的运动轨迹.因此不能说是做确定额轨道运动.解释一下不确定性原理:反映了微观粒子不同于宏观物体的运动特性:微观粒子的某些物理量(如位置和动

经典物理认为氢原子核外的电子在原子核的库伦引力作用下绕核做匀速圆周运动,假设电子的运动轨道半径为r

(1)k*e^2/r^2=m*r*(4*π^2)/T^2求得T=根号(4*π^2*m*r^3/(k*e^2)(2)k*e^2/r^2=m*v^2/r求得Ek=m*v^2/2=k*e^2/(2*r)

氢原子的核外只有一个电子,设电子在离原子核距离为R的圆轨道上做匀速圆周运动.已知电子的电荷量为e,运动速率为v,求电子绕

由题,电子圆周运动的速率为v,半径为r,则电子运动的周期为:T=2πrv根据电流的定义式得到,等效电流为:I=eT=ev2πR答案为:ev2πR

在氢原子模型中,电子绕核的运动可视为一个环型电流.设氢原子中电子沿半径为r的圆形轨道上运动,已知电子的质量为m,电子的电

电子绕核做匀速圆周运动,库仑力提供向心力为:ke2r2=m4π2rT2-----①   据电流的定义式:I=qT-----------②   

在氢原子中,电子围绕原子核运动,如将电子的运动看做轨道半径为R的圆周运动,

这个不是什么推导出来的,电场力F=ke^2/r^2,对r求个积分就可以了,还有其他的宏观的功也是由微积分得出的特殊解,并不是分析得出的而是微积分计算得出的,到大学系统学习了之后就会明白的

在氢原子中,电子绕核运动的轨道半径为r,电子的电荷量为e,则电子绕核运动的等效电流为多少?

首先,先考虑什么是电流.电流的定义是:单位时间内通过某一横截面的电荷量的多少.实际上电流是电荷运动的宏观表现,因为电荷量太多了,人根本无法再有限的时间内把通过某一横截面的电荷量精确地数过来,所以退而求

在氢原子模型中,电子绕核运动可等效为一个环形电流.设氢原子中电子在半径为r的轨道上运动,其质量、电荷量分别用m和e来表示

物理学的一个重要特征是,范围性:任何一条物理知识,物理理论,物理概念,物理规律(定律定理)都有一定的适用范围,超出了范围,就失效了.比如氢原子的模型(准确说是早期的玻尔模型),那时候,量子理论尚未建立

在氢原子模型中,电子绕核运动可等效为一个环形电流,设氢原子中的电子在半径为r的轨道上绕核运动,电子的质量、电荷量分别用m

要求等效电流,就是要求单位时间内经过的电荷数目:I=q/t.单位时间经过的电荷数目等价于单位时间内,H的电子转了多少圈.q=e*ωt.要求ω,就要根据向心力的关系F=mω^2r,且kee/r^2=F.

氢原子中电子离核最近的轨道半径r1=0.53×10-10m,试计算电子在该轨道上运动时的等效电流.

电子绕核运动一周穿过某一截面一次,设周期为T,则运动形成的等效电流为I=e/T(1)电子绕核运动的向心力等于库仑力;即kee/rr=m*(2π/T)^2*r(2)联立(1)(2)得;I=e^2/(2π

氢原子中电子离核最近的轨道半径r1=0.53x10^-3m试计算电子在该轨道上运动时的等效电流

ke^2/r^2=mV^2/rT=2πr/V=2mπ√r^3/e√kI=e/T=e^2√K/2mπ√r^3代入数据进行计算.

1.氢原子的能级是氢原子处于各个定态时的能量值,它包括氢原子系统的电势能和电子在轨道上运动的动能.氢原子的电子由半径为r

是B选项.再问:Hello本人认为C也是对的你觉得呢再答:原子从高能级向低能级跃迁,释放能量,所以放出光子,C是吸收光子。

氢原子中的电子以角速度w在半径为r的圆形轨道上绕质子运动,求电子的角动量,并用普朗克常量表示

由λ=h/(mv^2)可得,f=1/λ=mv^2/h=mr^2ω^2/hmvr=mr^2ω=2πfmr^2不难得出电子的角动量

经典物理认为氢原子核外的电子在原子核的库仑引力作用下做匀速圆周运动,电子的运动轨道半径为r,求

由库仑力提供向心力,Ke^2/r^2=mr(2π/T)^2,就可以求出T了.向心力改用mV^2/R,就可以求出V,动能也就好求了.

在氢原子模型中,电子饶核运动可等效为一个环形电流,设氢原子中的电子在半径为r的轨道上饶核运动

答案是:I=[(根号(Ke^2/mr))*e]/2*pi*r.pi=3.142I=e/T,T为周期.T=(2*pi*r)/v,v为线速度.由库仑力提供向心力知:[m(v^2)]/r=[k(e^2)]/

设氢原子的电子以速率v在半径为r的圆周轨道上绕核运动,电子的电荷量为e,等效电流有多大?

按照这个思路,电子到达的地方电流无限大,离电子远的位置,电流无限小.实际上,并不是这样.此处所求的等效电流,应该理解为是一段时间内的平均效应.例如,本题中电子的运动具有周期性,就要至少研究一个完整的周