有一质量为M=4kg的小车置于

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/27 12:27:55
如图所示,平板质量M=2.0kg的小车放在光滑水平面上,在小车左端放一质量为m=1.0kg的物块,物块与小车之间的动摩擦

 W总=97.5J.要考虑提供的外力是否能使两物体一起运动,即具有同样的加速度,两种情况下的F做功不同

质量为m=9kg的小车置于光滑水平面上小车平台面恰好与半径为r=0、45m的四分之一

小车质量M=9kg,置于光滑水的平面上,小车平台面恰好与半径为R=0.45m的四分之一圆周的固定的光滑轨道的末端B点相切,质量为m=1kg的滑块从轨道的上端A点无初速度释放,滑块滑上小车,并从小车的另

如图所示,有一长度x=1m、质量M=10kg的平板小车,静止在光滑的水平面上,在小车一端放置一质量m=4kg的小物块,物

小车和物块的运动情况如图所示,在物块运动到小车右端的过程中,小车发生的位移为x1,物块发生的位移为x2,取向右为正,以小车为研究对象,由牛顿第二定律得:μmg=Ma1…①由匀变速运动的公式得:x1=1

物理题受力分析有一质量M=2kg的小车置于光滑水平桌面上,在小车上放一质量m=4kg的木块,动摩擦因数为0.2,现木块市

答案是4m/s^2再问:怎么判断之后的两个物体的状态?再答:假定二者不发生相对滑动即以相同的加速度向右运动则a=30/6=5m/s^2而umg=8N

有一长度为x=1m,质量M=10kg的平板小车,静止在光滑的水平面上,在小车一端放置一质量m=4kg的小物块,物块与小车

如图5所示,有一长度s=1m、质量M=10kg的平板车,静止在光滑的水平面上,f=mg=4Kg×10m/s^2×0.25=10N小车的加速度a2=f/M=10N/10Kg

动量守恒定律的运用光滑水平面上有一辆质量为M=1kg的小车,小车的上表面有一个质量为m=0.9kg的滑块,在滑块与小车的

首先,做这种题目要确定系统,这道题目的确有点难,但仔细分析后就不这么难了.(1)把车,滑块,子弹看成系统,由于摩擦力属于内力,所以动量守恒,可列式:(m+M)V1-m0V0=(m+m0)V2+MV1要

如图所示,有一长度x=1m、质量M=10kg的平板小车,静止在光滑的水平面上,在小车一端放置一质量m=4kg的小物块,物

变化参考系的方法实在巧妙,但建议不要经常使用,牛顿运动定律常常以惯性系而言,对于非惯性系常常却又涉及另一些知识.首先呢,变换参考系,以B为参考系那么就假设他不动,A就具有一部分B速度,则在B参考系中A

如图所示,有一质量为M=2kg的平板小车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由

(1)由于开始时物块A、B给小车的摩擦力大小相等,方向相反,小车不动,物块A、B做减速运动,加速度a大小一样,A的速度先减为零.设A在小车上滑行的时间为t1,位移为s1,由牛顿定律μmg=maA做匀减

(12分)如图所示,有一质量为M=2kg的平板小车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为

(1) (2)  (3)试题分析:(1)由于开始时物块A、B给小车的摩擦力大小相等,方向相反,小车不动,物块A、B做减速运动,加速度a大小一样,但是A的初速度小,所以A的

有一长度x=1m,质量M=10kg的平板小车,静止在光滑的水平面上,在小车一端放置一质量m=4kg的小物块,

∵f=μmg=10N∴a(车)=f/M=1m/s∴x(车)=1/2*a*(t平方)=2m∴x(物)=x(车)+x=3m=1/2*a(物)*(t平方)∴a(物)=3/2(米/秒的平方)∴F合=ma(物)

质量为9kg的小车置于光滑的水平面上小车平台面恰好与半径为r=0、45m的四分之一

小车质量M=9kg,置于光滑水的平面上,小车平台面恰好与半径为R=0.45m的四分之一圆周的固定的光滑轨道的末端B点相切,质量为m=1kg的滑块从轨道的上端A点无初速度释放,滑块滑上小车,并从小车的另

如图所示,光滑水平面上有一辆质量为M=1kg的小车,小车的上表面有一个质量为m=0.9kg的滑块,在滑块与小车的挡板间用

①子弹射入滑块后的共同速度大为v2,设向右为正方向,对子弹与滑块组成的系统应用动量守恒定律得:mv1-mv0=(m+m0)v2…①代入数据得:v2=4m/s…②②子弹,滑块与小车,三者的共同速度为v3

质量为M的小车置于光滑水平面上,小车的上表面由光滑的四分之一圆弧和光黄平面组成,圆弧半径为R,车的右端固定有一不及质量的

答:整个系统没有能量损失,则根据机械能守恒和动量守恒有:mgR=1/2mv²+1/2MV²mv=MV解得V=√[(2m²gR)/(M²+m²)]仅供参

一质量M=100kg的平板小车停在光滑水平路面上,车身平板离地面高度h=1.25m.一质量m=50kg的小物块置于车的平

(1)设物块与车板间的摩擦力为f,则有F-f=Ma1f=μmg解得:a1=4m/s2设车启动至物块离开车板经历的时间为t1,物块的加速度为a2,则f=ma2 解得:a2=2m/s2(2)滑块与平板小车

有一质量为M=2kg的小车置于光滑水平面上,在小车上放有一质量m=4kg的木块.设木块与小车最大静摩擦力为12N,μ=0

整体法、隔离法、临界极值打字麻烦.假设小车、木块.一起运动,最大加速度取小车分析:a=最大静摩擦力/M=6整体的最大拉力F=(M+m)a=36N可见对木块施加24N和48N的水平恒力时,前者一起加速,

光滑的水平面上有一辆质量为M=1kg的小车,小车的上表面有一个质量为m=0.9kg的滑块,在滑块与小车的档板间用轻弹簧相

(1)MV0+mV1=(M+m)V共-------V共=14m/s方向向右(2)1/2M0V0^2+1/2(M+m)V1^2=E弹+1/2(M0+m+M)V车^2(M0+m)V共+MV1=(M0+m+

一个质量为60kg的人站在质量为20kg的小车上,小车以4m

请将您的问题补充完整吧,没有详解的要求,不好解答的啊...  我是天使的亲戚祝您早日解决问题,再问:谢谢你了。这个问题我已经会了。以后我们有不会的题,还请多多指教再答:好的。望采纳本问题哦~

有一个质量为2kg的长小车A,置于光滑水平面上,初速度为14m/s(方向向右).在小车A的右端轻放一个质量为0.1kg带

高中题目...1.先用qVB=Mbg得Vb=10(m/s)动量守恒MaVa=(Ma+Mb)V'得V'=13.3(m/s)>10(m/s)所以物体B的最大速度Vb=10(m/s)2.动量守恒MaVa=M

动量问题质量为M的小车置于水平面上.小车的上表面由1/4圆弧和平面组成,车的右端固定有一不计质量的弹簧,圆弧AB部分光滑

1滑块与小车初始状态为静止速度为0(共速)这没问题吧2末状态滑块相对小车静止:最后又返回到B相对于车静止(共速),关键是速度为什么是0因为开始时,小车,弹簧和球组成的系统相对水平面是静止的,以水平面为