放于竖直面内的光滑金属细圆球半径为R,质量为m的带孔小球

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/12 09:32:45
如图,宽度为L=0.5m的光滑金属框架MNPQ固定于水平面内,并处在磁感应强度大小B=0.4T,方向竖直向下的匀强磁场中

(1)通过受力分析得:金属棒仅受安培力作用,其大小F=ma=0.2N,金属棒运动0.5m,因为安培力做功量度外界的能量转化成电能所以框架中间生的焦耳热等于克服安培力做的功,所以Q=Fs=0.1J.(2

如图所示,光滑水平面AB与光滑竖直面内的半圆形导轨在B衔接

①物块恰能完成半圆周运动到达C点mg=mv^2/R由平抛运动规律2R=1/2gt^2x=vt联立解方程得x=2R由能量守恒得②弹簧对物体的弹力做的功WW=EP=mg2R+1/2mV^2=5mgR/2③

如图,放于竖直面内的光滑金属圆环半径为R,质量为m的带孔小球穿于环上,同时有一长也为R的细绳一端系于球上,另一端系于圆环

小球受重力和圆环的弹力,两个力的合力垂直于转轴,提供向心力,根据牛顿第二定律有:F合=mgcot30°=mRcos30°ω2,解得ω=2gR.故D正确,A、B、C错误.故选D.

竖直面内一个光滑四分之一圆弧,小球由静止开始自由下落,速度对时间的函数能求吗?

这应该是一个自由落体和匀速圆周运动的叠加,工科的大学可能解决不了,理科的应该能办.再问:哦,那能不能告诉我用理科方法得到的公式是什么样子的?谢谢

如图,放于竖直面内的光滑金属圆环半径为R,质量为m的带孔小球穿于环上,同时有一长也为R的细绳一端系于球球一定受到的是重力

球一定受到的是重力和环的弹力,绳只有在张紧时才有张力故在临界情况下,绳恰好伸直却没有张力,此时由几何关系可知弹力斜向上与水平成30°,旋转半径为Rcos30°故a=gcot30°又a=w^2*Rcos

如图,放于竖直面内的光滑金属圆环半径为R,质量为m的带孔小球穿于环上,同时有一长也为R的细绳一端系于球

圆环对小球的弹力方向是指向环的圆心的,绳长为R,圆心与绳的两端组成等边三角形,弹力方向与绳成60°,弹力与水平成30°.

如图,放于竖直面内的光滑金属圆环半径为R,质量为m的带孔小球穿于环上同时有一长为R的细绳一端系于球上,另一端系于圆环最低

你的图是不是也是这个?http://zhidao.baidu.com/question/247623639.html上面有回答!不过,你看他回答你就知道,这个题很明显说了“此时,小球受3个力”,猜想出

半径为R的光滑圆周轨道固定于竖直面内,一质量为m的小球在轨道内做圆周运动,经最高点C时,对轨道的压力大

(1)从C到最低点A的过程中,重力作功的结果是重力势能减小,动能增加,而运行时间为T/2,所以平均功率=2Rmg/(T/2)=4mgR/T(2)小球经过最高点C时,运动方向为水平方向,与重力方向垂直.

如图所示,MN和PQ是两根放在竖直面内且足够长的平行光滑金属导轨,相 距为2L.左侧是水平放置长为6L、间距

求变力F做的功,可利用F-x图像的面积来求如图 在ef位置F=2BIL F=kxx=F/k=2BIL/kF做的功,是Fs的积分,就等于阴影的面积W=½底×高 =

在倾角θ=30°的斜面上有一块竖直放置的挡板,在挡板和斜面之间放有一个重为G=20N的光滑圆球,保持静止.如图所示.求这

对球受力分析如图所示:由于光滑圆球受共点力处于静止状态,所以光滑圆球的合力为0.将FN1在水平方向和竖直方向分解,由共点力平衡的条件得出:球对挡板的弹力FN2=Gtan30°=2033N答:这个球对挡

如图所示水平光滑的平行金属导轨,左端接有电阻R,匀强磁场B竖直向下分布在导轨所在空间内,质量一定的金属棒PQ垂直于导轨放

A正确,因为磁通量变化相同,电磁感应产生的电子数相同,因此电能相同B正确,理由同AC错误,因棒速度不同,产生电流不同,因此加速度不同D正确,安培力做功等于回路中的电能.

光滑水平面AB与竖直面内的半圆形导轨在B点衔接,

解(1)物块在B点时由牛顿第二定律得NB-mg=(mVB²)/R①NB=7mg②由机械能守恒知W=½mVB²=3mgR(2)由牛顿第二定律知NC+mg=mVc²

图中a1b1c1d1和a2b2c2d2为在同一竖直面内的金属导轨

因为两根棒用不可伸长的绝缘轻线相连.所以棒的速度一定一样!

如图所示,光滑水平面 与竖直面内粗糙的

恰好到达C点就是说速度为V=根号gR你说的到达C点为0吧?这个想法是错误的恰好到达最高点的问题这个跟绳子拉球的问题相同(V=根号gR)和杆子圆管问题不同(V=0)就点到这了中间都是计算过程这里不好打出

如图所示,在磁感应强度为B的水平匀强磁场中,有一足够长的绝缘细棒OO'在竖直面内垂直于磁场方向放

是这样,垂直于杆方向,重力分力由支持力和洛伦兹力平衡,其中洛伦兹力始终垂直杆向上,一开始洛伦兹力小,为平衡重力分力支持力也垂直杆向上,随着洛伦兹力的逐渐增大,支持力逐渐减小,到0后为了平衡较大的洛伦兹

光滑的圆球放在光滑倾斜挡板B和竖直挡板A之间,当

B、C.画一个等效三角形,其中竖直方向的重力等效边长度不变,而重力边与B挡板的弹力的等效边夹角从零逐渐增大.

如图,MNP为竖直面内以固定轨道,某光滑圆弧段MN与水平段NP相切于N ,P端固定一竖直板。M端相对于N的高度差为h,N

解题思路:从物块开始下滑到物块停止的整个过程中,应用动能定理可以求出动摩擦因数.注意这里存在两种可能情况。解题过程:解:这里存在两种可能:第一种情况:物块与P处的竖直挡板相撞后,向左运动一段距离,停在

为什么选C呢?A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,整个装置处于静止状态,若把A向右移动少许后,它们仍处于静

因为小球受到了三个力的作用,一个是墙对小球的压力,A对B的压力,B自身的重力,这三个力平衡,也就是重力和墙压力的合力等于A对B的压力,当A向右移动了之后,三力仍然平衡,重力不变,但是A对B的压力与地面

质量为m=8kg的圆球放在光滑的竖直挡板之间,斜面倾角a=37度,保持挡板竖直,斜面和挡板对球的弹力大小.

球受到重力,板的水平弹力F,斜面的弹力N,合力为0由三角形知识得N*cos37度=mg,得N=mg/cos37度=8*10/0.8=100牛顿F/mg=tan37度,得F=mg*tan37度=8*10