如图所示质量为m的小车以恒定速率

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/17 06:17:53
如图所示,质量为M的滑块,以水平速度V滑入光滑的四分之一的圆弧的小车上,小车质量M=2M,小车和地面摩擦不计

答案:(1)h=v2/3g(2)v2=2v/3(点拨:(1)最高时与M的速度相同,对m和M组成的系统应用动量守恒定律,可得:mv=(M+m)v′,则v′=v/3,根据机械能守恒定律可得:mv2/2=(

一辆质量为m,额定功率为P的小车从静止开始以恒定的加速度a启动

很简单,因为题目只是告诉你小车的加速度恒定,并没有告诉你牵引力F以及阻力f都是恒力啊,牵引力F是变力,阻力f是变力,但是二者的差值可以是恒力啊,这种情况下加速度恒定,但功的公式不能用,因为f+ma是变

一个质量为5000kg的小车,从静止以恒定功率启动,40s后速度达到最大,此过程中行驶了400m.阻力恒定.求最

谁说不可能--楼上不懂就别乱误导人了,恒定功率是指的牵引力功率啊亲,谁跟你说阻力了.不过话说回来,感觉这个题目少了条件啊...也可能是我凹凸了,先把我能想到的给你列出来吧.首先设末点速度为v,阻力为f

质量为m的小车以恒定速率v沿半径为R的竖直圆环轨道运动,已知动摩擦 因数为μ,试求小车从轨道最低点运动到

2πR×μmg知道怎么求功吗?路程和力的大小.求摩擦力μmg,再求路程,做得的圆周运动,路程就是圆的周长了2πR

如图所示,小车上固定一弯折硬杆ABC.C端固定一质量为m的小球,已知a角恒定,当小车水平向左作变加速直线运动时,BC杆对

选择D假设这个力的方向和水平方向的夹角为β,那么有Fcosβ=ma(1)Fsinβ=G=mg(2)G是小球的重力,a是加速度(2):(1)=tgβ=g/a发现当a变化时β也变再问:可以画出受力分析图吗

如图所示,小车上固定一弯折硬杆ABC,C端固定一质量为m的小球,已知a角恒定.当小车水平向左做匀加速直线运动时,BC杆对

D杆对小球提供的不一定沿杆方向小球所受合力水平向左,这个合力是由竖直向下的重力和杆的弹力提供的,所以杆的弹力方向介于水平向左和竖直向上之间假设加速度为a,作用力与竖直方向夹角为c的话c=arctana

物42.如图所示,在光滑水平面上停放着质量为m、装有光滑弧形槽的小车,一质量也为m的小球以水平初速度

根据动量守恒和能量守恒(1)在水平方向,从最初和最末的状态来看,这个过程动量守恒,能量(而且表现为动能,由于高度一样,所以势能没有变化)也守恒,其结果跟弹性碰撞是一样的.所以发生了速度替换.故:小车速

如图所示,质量为M的平板小车停在光滑水平地面上,一质量为m的滑块以初速度v0=3m/s

【解析】这道题目可以用相对运动来做,m刚上M时,相对速度是V0,关键是要求出相对加速度的大小是两个加速度相加,注意对于两个物体水平上的受力都是μmg,再分别除以各自的质量得出加速度,而他们的相对加速度

质量为m的小车在光滑地面上以恒定功率p从静止开始运动,当位移为s求时间t

我想这问题是不是有问题?P=F*V功率多与力和速度挂钩,例如牵涉以什么方式启动问题,如果是光滑地面匀速行驶就不要消耗功,光滑地面这个理想模型不会出现在这里,正如冰地上开车,你多大油门也没用.

如图所示,质量为m的小物块以水平速度v0滑上原来静止在光滑水平面上质量为M的小车上,物块与小车间的动摩擦因数为μ,小车足

物块滑上小车后,受到向后的摩擦力而做减速运动,小车受到向前的摩擦力而做加速运动,因小车足够长,最终物块与小车相对静止,如图8所示.由于“光滑水平面”,系统所受合外力为零,故满足动量守恒定律.(1)物块

如图所示,在光滑水平面上,质量为M的小车正以速度v向右运动,现将一个质量为m的木块无初速地轻轻地放上小车,由于木块和小车

1.解设动摩擦因数为u,小物块m的加速度是ug,小车M的速度为v.则共速时间为t=v/ug经计算小车位移为:v方/ug=2sm位移为:v方/2ug=s可知小车位移为物块位移的两倍根据动能定理,物块最终

11.如图所示,在光滑水平面上,有一辆质量为M的小车,在小车左端有一个质量为m的物体,M=2m,小车以v0的速

首先,物体没有掉下来,那么最终物体和车速度相同,碰撞没有损失机械能,那么就是碰撞前后能量守恒,即车的速度大小不变,方向相反,所以根据动量守恒,可知,最后的速度v=(m*v0)/3m=v0/3,所以最短

如图所示,在光滑水平轨道上有一小车质量为2m,它下面用长为L的绳系一质量也为2m的小砂袋,系统原来处于静止.今有以水平速

(1)子弹射入砂袋过程中的发热量等于子弹和砂袋组成的系统损失的机械能又子弹射入砂袋的过程中,系统在水平方向动量守恒有:m子v0=(m子+m砂)v1得v1=m子m子+m砂v0=13v0∴Q=12m子v0

如图所示,质量为M的小车静止在光滑的水平面上,质量为m的小滑块在电动机的牵引下以恒定的速度向前运动,现使小滑块滑到小车上

(1)设小滑块在小车上的滑动摩擦力为Ff,则Ff=μmg根据牛顿第二定律有:Ff=Ma,则a=μmgM从小滑块滑上小车到相对小车静止所经历的时间为t,则t=va=Mvμmg.因为小车做匀加速直线运动,

质量为M的小车静止在光滑的水平面上,现在有一个质量为m的小铁块,以初速度v0从左端滑上小车,如图所示,铁块与小车之间的动

(1)若小铁块不会从小车上滑落,则有最终小铁块将与小车保持相对静止.根据动量守恒定理,有mVo=(M+m)Vt得Vt=mV0/M+m(2)从小铁块以初速度Vo从左端滑上小车,到最终与小车保持相对静止的

如图所示,质量为m的物体(可视为质点)以水平速度v0滑上原来静止在光滑水平面上质量为M的小车,

动量守恒:mv0=(M+m)v小车的速度v=mv0/(M+m)摩擦力=umg小车的加速度=ug2ug*S=v^2小车通过的位移S=m²v0²/[(M+m)²2ug]再问:

在质量为M的小车中挂有一单摆,摆球的质量为m0,小车和单摆一起以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静

碰撞的瞬间小车和木块组成的系统动量守恒,摆球可认为没有参与碰撞,由于惯性其速度在瞬间不变.若碰后小车和木块的速度变v1和v2,根据动量守恒有:Mv=Mv1+mv2.若碰后小车和木块速度相同,根据动量守

如图所示,质量为m=1kg的滑块,以v0=5m/s的水平初速度滑上静止在光滑水平面上的平板小车,小车质量M=4kg,小车

①滑块与小车组成的系统动量守恒,以滑块的初速度方向为正方向,由动量守恒定律得:mv0=(m+M)v1,解得:v1=1m/s;②小车与墙壁碰撞后速度大小为1m/s,方向向左,小车与滑块组成的系统动量守恒

如图所示,小车上固定一弯折硬杆ABC,C端固定一质量为m的小球.已知α角恒定,当小车水平向左作变加速直线运动时,BC杆对

小球受重力和杆子的作用力两个力作用,BC杆对小球的作用力有两个效果,竖直方向与重力平衡,竖直方向分力不变,水平方向提供产生加速度的合外力,大小随加速度变化而变化,所以BC杆对小球的作用力随加速度a的数