如图所示,轨道AB是在竖直平面内半径为R的1 4圆周,在B点轨道的切线

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/26 09:21:19
如图所示,在竖直平面内有轨道ABCDE,其中BC是半径为R的四分之一圆弧轨道,AB是竖直

注意到Q的速度是水平的,但是可以分解成两个方向:1.按照直杆的伸展方向2.按照直杆的转动方向这两个分速度是正交的同理,P的速度是与水平面呈60°角向下,也可以做类似的分解.而且二者直杆的伸展方向是速度

AB是竖直平面内的四分之一圆弧轨道,在下端B与水平直轨道相切,如图所示.一小球自A点起由静止开始沿轨道下滑.已知圆轨道半

在B处,还属于向心运动,因此F(NB)=F向+G=mv^2/R+mg,而C处小球是匀速直线运动,F(NC)=重力G=mg,又因为根据能量守恒,A点的势能mgR=B处的动能1/2mv^2,从而求出mv^

如图所示,ABDO是固定在竖直平面内的光滑轨道,AB是半径为R=15 m的四分之一圆周轨道,半径OA处于水平位置

1)机械能守恒:mgh=1/2mv²解得v=10√(2)=14.142)机械能守恒:mgh=1/2mv²,小球脱离轨道后降地时长:t=√(2R/2/g),其中R=15由几何关系得同

如图所示,abc是光滑的水平轨道,bc为与ab相切的位于竖直平面内的半圆,半径R,质量m的小球A静止在轨道上

这是高中物理题.按照我上高中时候的要求来讲,这个题目的条件不充足,是解不出来的.既然碰撞后A能过最高点,显然要用到能量守恒定律.也就是碰撞前后动能+势能总量不变.但是题目没有给出B碰撞后的运动情况(个

如图所示,竖直平面内的轨道ABCD由水平轨道AB与光滑的四分之一圆弧轨道CD组成,AB恰与圆弧CD在C点相切

第一问u=2E/3mgL吗?再问:是啊,是这个结果,第一问我算出来了,第二问呢?再答:知道摩擦系数了可以求出物体在水平面上的加速度a=-μg又根据初动能求出物体冲上水平轨道的初速度再根据v‘‘^2=2

如图所示,竖直平面内的轨道ABCD由水平轨道AB与光滑的四分之一圆弧轨道CD组成,AB恰与圆弧CD在C点相切,轨道固定在

图是黑的啊!再答:你在这里看看,有很多题目和你的类似:http://www.jyeoo.com/physics2/search?c=0&q=%E5%A6%82%E5%9B%BE%E6%89%80%E7

如图所示的装置是在竖直平面内放置的绝缘轨道,处于水平向右的匀强电场中,

答案是5.1R吗?这题可以用等效重力场来解决这样可以将重力和电场力合成一个向坐下,与水平面成53的合成重力mg',大小等于1.25mg能够做圆周运动,则mg'=1\2mv^2,所以得到1\2mv^2=

如图所示,AB是竖直平面内的四分之一光滑圆弧轨道,

(1)小球从A点运动到B点,根据机械能守恒定律,圆弧轨道是光滑的不算其阻力,其势能全部转换成动能,A点相对B点势能为mgR,B点动能就是mgR.(2)、在R/2处,A处的一半势能转移为动能,mgR/2

AB是竖直平面内的四分之一圆弧轨道,在下端B与水平直轨道相切,如图所示.一小球自A点起由静止开始沿轨道下滑.已知圆轨道半

(1)从A→B过程,由动能定理得:mgR=12mvB2-0,解得:vB=2gR;(2)小球在经过圆弧轨道的B点时,由牛顿第二定律得:NB-mg=mv2BR,解得:NB=3mg,从B→C做匀速直线运动,

如图所示,轨道ABCD固定在竖直平面内,其中AB为倾斜的光滑直轨道,BC是长L=0.8m粗糙水平直轨道,CD是半径为R=

(1)由Gh=mv^2/2带入数据得v=2m/sG=10N/KG(2)μmgs=mv^2/2带入数据得μ=0.25(3)滑块下落高度再加上CD的垂直高度,h+2R=0.4m再问:请问第三问能讲明白下吗

如图所示,abc是光滑的轨道,其中ab是水平的,bc为竖直平面内的半圆且与ab相切,半径R=0.3m.zhiliangm

1、(1)分别以v1和v2表示小球A和B碰后的速度,v3表示小球A在半圆最高点的速度,则对A由平抛运动规律有:L=v3t和h=2R=gt2/2解得:v3=2m/s.对A运用机械能守恒定律得:mv12/

如图所示,圆轨道AB是竖直平面内的1/4圆周,在B点轨道的切线是水平的,一小球自A点起由静止开始沿轨道下滑

此处受力仅有支持力与重力,且两者合力为竖直向上的向心力,其向心加速度即其加速度根据机械能守恒,滑过B点时质点的速度为√(2gR)向心加速度a=v^2/R=2g,支持力大小为3mg

由光滑细管组成的轨道如图所示,其中AB段和BC段是半径为R的四分之一圆弧,轨道固定在竖直平面内.一质量为m的小球,从距离

从D到A机械能守恒,mg(H-2R)=mv^2/2,所以C正确.A点速度v=sqrt(2g(H-2R))落地时间t=sqrt(2*2R/g)=2sqrt(R/g)则离A水平距离=vt=2sqrt(2R

5,如图所示,在竖直平面内,AB为水平放置的绝缘粗糙轨道,CD为竖直放置的足够长的绝缘粗糙轨道,

电场力F电=qE=8N,方向水平向右(因为带电体从A点由静止开始向右运动)带电体与AB间滑动摩擦力f1=μmg=1N带电体与CD间滑动摩擦力f2=μF电=4N1、从A到C,由动能定理可得:F电·(SA

AB是竖直平面内的四分之一的弧轨道,在下端B与水平直轨道相切,如图所示.

第一问滑到B时候运用动能定理mgh=1/2mv^2所以V^2=2gh在B点时Fn=m*2gh/R=N-mg所以NB=2mgh/R+mg方向竖直向上至于C点由于是水平直轨道上Nc=mg

如图所示,ABC是光滑的轨道,其中AB是水平的,BC为竖直平面内的半圆,半径为R,且与AB相切.质量m的小球在A点以初速

从A到C的过程中运用动能定理得:12mvC2-12mv02=-mg2R解得:vc=v20-4Rg(2)在C点根据向心力公式得:Nc+mg=mvc2解得:Nc=mv20R-5mg (3)小球离

10月9日物理5,如图所示,在竖直平面内,AB为水平放置的绝缘粗糙轨道,

1)在AB段对物体进行受力分析,知道此时物体收到重力、支持力、摩擦力和电场力,水平方向上有F=Eq-uN=ma;竖直方向上:mg=N.那么在AC过程中,合力做的功等于物体动能的变化,所以有mgR+Eq

如图所示,ABCDE为固定在竖直平面内的轨道,ABC为直轨道,AB光滑,BC粗糙,CDE为光滑圆弧轨道,轨道半径为R,直

(1)小物体下滑到C点速度为零.小物体才能第一次滑入圆弧轨道即刚好做简谐运动.从C到D由机械能守恒定律有:mgR(1-cosθ)=12mvD2    ①在D点用