如图所示,质量为1 2m的带有1 4

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/17 21:46:21
如图所示,质量为M的斜劈形物体放在水平地面上,质量为m的粗糙

有向下的加速度意味着合力向下,所以对于m来说设它的支持力为N,则它竖直方向上(mg-N)>0,所以也就是说mg>N,而对于M来说,它受到N的反作用力,因此它需要的支持力就是Mg+N,而因为N

如图所示,光滑绝缘轨道上有两个质量均为m的带电小球A、B,分别带有+4Q、—Q的电量,

因为两球相对位置不变,可知两球没有相对运动,所以两球所受合外力相等.A球受两个力,1.匀强电场中的电场力.F=E*4Q;2.库伦力.与电场力方向相反,F=C*4Q*Q/r*r.A的合外力为E*4Q-C

如图所示,光滑绝缘轨道上有两个质量均为m的带电小球A、B,分别带有+4Q、—Q的

整体法设它们之间的距离是L.对整体有 F合=(2m)a(4Q-Q)E=(2m)a a=3Q*E/(2m)然后隔离法FA合=4Q*E-(k*4Q*Q/L^2)=ma4Q*E-(k*4Q*Q/L^2)=m

带有1/4光滑圆弧轨道,质量为M的滑车静止置于光滑水平面上,如图所示,一质量也为M的小球以速度v0水平冲

因为无论它速度多大,最后离开滑车的时候速度方向一定是沿轨道的切线方向,也就是竖直方向.所以在水平方向上根本就没有初速度,因此会做自由落体运动.

带有1/4光滑圆弧轨道质量为M的滑车静止置于光滑水平面上,如图所示,一质量也为M的小球以速度v0水平冲上滑车,到达某一高

你想岔了,上面的题从力的角度看,小球在上坡时的压力使小车有向右的加速度,小车会一直向右运动;从动量的角度看,小球向右的初速v0,那么小球和小车这个系统就有向右的总动量,小球和小车最终可能有四个状态,A

右端带有1/4光滑圆弧轨道质量为M的小车静置于光滑水平面上,如图所示.一质量为m的小球以速度v0水平冲上小车,关于小球此

整个系统的初动量P=mv0,因为系统置于光滑水平面,符合动量守恒,无论小球最终做什么样的运动,系统水平方向的动量都是P=mv0.设小球离开车速度为v1,车速度为v2.(整个速度都是绝对速度,以地面为参

如图所示,一个半径为R的绝缘光滑半圆环,竖直放在场强为E的匀强电场中,电场方向竖直向下.在环壁边缘处有一质量为m,带有正

根据动能定理得,mgR+qER=12mv2在最低点有:N-mg-qE=mv2R,联立两式解得N=3(mg+qE).所以小球经过最低点时对环底的压力为3(mg+qE).故答案为:3(mg+qE).

右端带有光滑圆弧轨道质量为M的小车静置于光滑水平面上,如图所示.一质量为m的小球以速度v0水平冲上小车,小球未从轨道上飞

1、小球上升到最高点时,垂直方向的速度为0,水平方向的速度与小车相同,假设为v1,小球在车上上升的最大高度假设为h.根据动量守恒和能量守恒m*v0=(M+m)*v1(1)1/2*m*v0^2=1/2*

(2014•奉贤区二模)如图所示,一端带有滑轮的粗糙长木板,1、2是固定在木板上的两个光电门,中心间的距离为L.质量为M

(1)根据牛顿第二定律,对整体有:a=mgM+m,则绳子的拉力F=Ma=MmgM+m=mg1+mM,当M>>m,重物的总重力等于绳子的拉力,等于滑块的合力.滑块通过光电门1的瞬时速度v1=d△t1,通

如图所示,带有光滑弧形轨道的小车质量为m,放在光滑水平面上,一质量也是m的铁块,以速度v沿轨道水平端向上滑去,至某一高度

整个过程水平方向动量守恒,机械能守恒,所以相当于弹性碰撞!由于小车和铁块的质量都为m,所以当铁块回到小车右端时,铁块的速度为0,小车具有向左的速度.所以当铁块回到小车右端时将做自由落体运动.故选:D.

如图所示,质量为M的框架放在水平地面上

对框架受力分析,因为框架始终处于平衡状态,故受到重力,地面弹力,弹簧弹力三力平衡.当地面弹力==0时,要平衡,则必有弹簧弹力==Mg,方向竖直向上.根据牛三,一对相互作用力等大反向,所以弹簧对小球有一

如图所示,A为竖直放置的圆形金属板,半径为r,带有电荷量为Q的正电荷,小球质量为m,电荷量为q,半径可忽略,用绝缘丝线悬

绳子拉力为F小球受到重力为mg小球受到的电场力水平向右为qE小球受到的重力与电场力合成力G画出受力分析图可得出mg=qE,G=F所以小球所在电场强度E=mg/q

如图所示,在光滑的水平地面上放着质量为M带有倾角为a斜面的木块A,斜面上放着质量为m的小木块B,AB之间的摩擦系数为μ.

当物体发生相对滑动时就不符合题意了.所以,要对达到最大静摩擦力的临界状态进行受力分析.在沿斜面方向上,mgsina+μ(mgcosa+Fsina)=Fcosa,(F为水平外力).F=(mgsina+μ

4.带有1/4光滑圆弧轨道,质量为M的滑车静止置于光滑水平面上,如图所示,一质量也为M的小球以速度v0水平冲上滑车,到达

以小球和滑车整体为研究对象,整个过程中,由于水平方向不受外力,故水平方向上动量守恒,设小球和滑车的最终速度分别为V1,V2,列水平方向上动量守恒:MV0=MV1+MV2,对整个过程列能量守恒:1/2M

如图所示,光滑水平面上静止放着长L=1.6m,质量为M=3kg的木板,一个质量为m=1kg的小

在应用牛顿第二定律是研究对象是谁就用谁的质量,在这里ma和F的受力对象是M

如图所示,在光滑水平面上放置A、B两物体,其中B物体带有不计质量的弹簧静止在水平面内.A物体质量为m,以速度v0逼近B,

AB、在AB碰撞并压缩弹簧,在压缩弹簧的过程中,系统所受合外力为零,系统动量守恒,在任意时刻,A、B两个物体组成的系统的总动量都为mv0,故A正确;B错误;C、在任意的一段时间内,A、B两个物体受到的

带有1/4光滑圆弧轨道质量为M的滑车静置于光滑水平 怎么做的

题目意思不明确,麻烦修正下再问:题目怎么做,说思路。再答:关键是我没看懂你表达的意思再问:图片啊再答:设小球落下后速度为v1,M速度为v2根据动量守恒mv。=mv1+Mv2再根据能量守恒1/2&nbs

如图所示,质量m=0.1克的小物块,带有5×10-4库仑的电荷,放在倾角为30°的光滑绝缘斜面上,整个斜面...

(1)物块带什么电?根据左手定则,带正电;(2)物块离开斜面时速度多大?mg/BQcos30°=8√3/3≈4.62m/s;(3)斜面至少有多长?斜面长:L=H/sin30°=0.5v^2/0.5g=