如图,光滑圆柱被固定在水平平台上,质量为m1

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/16 05:05:14
(2011•潍坊模拟)如图所示,水平路面CD的左侧有一固定的平台,平台上表面AB长s=3m.光滑半圆轨道AFE竖直固定在

(1)物块随车运动撞击平台时的速度v1满足:-μ1(m+M)gL=12(M+m)v12-12(M+m)v02由此可得:v1=62m/s(2)物体从木板右端滑到平台A点:-μ2mg(S+L)=12mv2

.如图所示,水平路面CD的左侧有一固定的平台,平台上表面AB长s=3m.光滑半圆轨道AFE竖直固定在平台上,圆轨道半径R

/>物块与车一起碰撞平台时的速度为v1,碰撞前过程应用动能定理:-μ1(m+m板)gL=½(m+m板)v1²-½(m+m板)vo²v1²=vo

(2013•嘉定区三模)如图,物体M的各表面光滑,上表面水平,放在固定的斜面上.在M的水平上表面放一光滑小球m,后释放M

楔形物体释放前,小球受到重力和支持力,两力平衡;楔形物体释放后,由于小球是光滑的,则小球水平方向不受力,根据牛顿第一定律知道,小球在水平方向的状态不改变,即仍保持静止状态,水平方向不发生位移.而竖直方

帮忙解一道大学物理题4、质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯

动能和转动惯量关系式,w表示角速度:E=(1/2)Jw^2而小球的动能为E=(1/2)mv^2人和平台动能相同(摩擦力等大反向,做功相同)所以w=*v根号下(m/J)转动方向与小孩相反顺时针

如图 在距水平地面高为0.4m处,水平固定一根长直的光滑杆,在杆上P点固定一定滑轮,滑轮可绕水平轴无摩擦的转动,在p点的

(1)在把小球b从地面拉到p点正下方的c的过程中,a的位移为Xa=√(0.4²+0.3²)m-0.1m=0.4m所以f做的功为W=fXa=22J(2)因a的速度等于绳的速度,当b到

刚体定轴转动问题一个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,

C因为人、哑铃与转动平台组成系统,合外力矩为0.,所以角动量守恒因为L=Jw,J减小,所以w增大.系统势能不变,动能增加,所以机械能不守恒

如图所示,在水平光滑桌面上放一质量为M的玩具小车,在小车的平台(小车的一部分)上有一质量可忽略的弹簧,一端固定在平台上,

题中“用质量为m的小球将弹簧压缩一定距离后用细绳捆住,用手将小车固定在桌面上,然后烧断细绳,小球就被弹出”,从能的转化和守恒角度来看,这个过程是弹簧的弹性势能转化为小球和车的动能,不是小球的动能等于小

如图8所示,轻弹簧的一端固定在竖直墙上 ,质量为m的光滑弧形槽静止放在光滑水平面上,弧形槽底端与水平面相切,一个质量也为

A.机械能守恒?只受到重力,机械能才守恒.他还受到弹簧弹力呢!所以并不守恒.B.物体受到重力呢,动量守恒只有在外力0,或者可以忽略时候才行.所以并不守恒.C.反弹后不受到阻力,匀速吧,对了.D.回不去

6疑问,如图,20-A-3所示,质量为m的物体静止放在水平光滑的平台上,系在物体上的绳子跨过光滑定滑轮,

(一)先解释第二个问题:  人做功(即合外力做的功)等于系统(人和物体)增加的动能(动能定理),由题意可知,人的动能不变,而物体的动能从零增加,因而系统的动能增加量等于物体的动能.结论:此题中,人做功

如图,一质量为M的木板B静止在光滑水平面上,其右端上表面紧靠(但不粘连)在固定斜面轨道的底端(斜面底端是一小段光滑的圆弧

物体沿斜面下滑加速度a=g(sin37-μcos37)=4所以下滑到斜面末端速度v1,2aL=v1^2v1=8m/s设后来共同速度为v2,A与B的质量比m:M=k,A与B共同运动时间为t.A减速v2=

如图,长为R的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面内作圆周运动,关于小球在最高点的速度v

A、由于杆能够支撑小球,所以小球在最高点的最小速度为零,故A错误.B、在最高点,根据公式F=mv2R,可知速度增大,向心力也逐渐增大.故B正确.C、在最高点,若速度v=gR,杆子对小球的弹力为零,当v

如图,在竖直平面内固定一个半径为R的1/4光滑圆形轨道AB,底端B切线方向连接光滑水平面,C处固定竖直挡板,BC间的水平

物块第一次滑到C点时速度为V=sqr(2gh) (由机械能守恒定律得到)第一次碰撞C板后反弹速度为V/5     第二次反弹后速度为V/25

如图所示,一个光滑的圆锥体固定在水平桌面上,

好长时间没碰物理了.我是大一新生;试试哈!1.首先进行受力分析:球受绳对物体的拉力F及重力G.其合力提供向心力NN=mv2\L.又N=F*sin30°,又知道v故求得F

如图1-67所示,半径为r、质量不计的圆盘,盘面在竖直平面内,圆心处有一个垂直盘面的光滑水平固定轴O,圆盘可绕固定轴O在

(1)设AB初始角速度至少为ω0.临界条件:小球B能达到最高点.根据能量守恒定律,有3/2mω²r²=2mgr解得ω=√¾g/r(2)A对盘的作用力与B的抵消.设此时两球

如图,在光滑水平面上有一物体,其左端连一轻质弹簧,弹簧另一端固定在墙上,起初物体静止在水平面上,现给

(1)有动能定理得:因为物体的初速度和末速度均为0,所以FL-Ep=0;Ep=FL而弹性势能为:Ep=1/2kx^2=FL弹簧弹力Fmax=KL=2F(2)当速度最大时,弹簧弹力等于恒力FF弹=Kx=

*如图,在光滑水平面上有一物体,其左端连一轻质弹簧,弹簧另一端固定在墙上,起初物体静止在水平面上,现给物体施加一水平向左

(1)当弹簧的弹力最大时,物体的速度为零,据动能定理有:FL-W弹=0,得:W弹=FL,弹簧的 弹性势能为:kx2/2=FL,而x=L,有k=2F/L,得:kx=2F,即弹簧产生的最大弹力为

19.(12分)如图13所示,半径为R的光滑半圆环轨道竖直固定在一水平光滑的桌面上,桌距水平地面的高度也为R。在桌面上轻

解题思路:(1)小球a恰好能通过A点,重力提供向心力,根据牛顿第二定律列式求解A点速度,然后根据机械能守恒定律求解a球刚离开弹簧时的速度;(2)b球离开桌面后做平抛运动,根据平抛运动的规律列式求解;(

如图所示,一光滑圆柱体固定在水平平台上,质量为m甲的小球用轻绳跨过圆柱与小球m乙相连,开始时将m甲放在平台上,用手按住,

上面答案说反了.将分子分母倒过来才对.5/π+1B减少的重力势能转化为A增加的重力势能加上二者的动能,既可以求得.